关注微信 微信二维码
咨询热线: 0531-85960083
济南融恩机电设备有限公司
德国VSEAHM01-2S G1/8N流量计资料
编辑:admin 浏览量:59 发布日期: 2022-05-11 00:54
德国VSEAHM01-2S G1/8N流量计资料同时我们还经营:任何一类计量仪表都具有其特殊性,旋进旋涡流量计也不例外.为了让该种仪表能够更好地服务于流量计量工作,来自于生产现场的实践经验表明,以下几个方面的注意事项就应当引起有关管理及使用部门的足够重视。1.重视仪表选型  在已经选定了仪表种类(比如旋进旋涡流量计的情况下,紧接着就是对仪表规格及其配套元件的选择,这一工作看似简单,实则至关重要.一句话,选好才能用好.为此,在选型过程中应把握住两条基本原则,即:一要保证使用精度,二要保证生产安全.要做到这一点,就必须抓实三个选型参数,即近期和远期的最大,最小及常用瞬时流量(主要用于选定仪表的大小规格),被测介质的设计压力(主要用于选定仪表的公称压力等级),工作压力(主要用于选定仪表压力传感器的压力等级)。2.进行用前标校  一方面,考虑到目前对这类仪表的现场检定还存在这样那样的困难.另外,如果购置的意图又是准备将该种仪表运用于比较重要的计量场合,比如大流量的贸易计量或计量纠纷比较突出的测量点,并且运用现场也不具备流量在线标校条件,那么在这种情况下,仅凭购买时由生产厂家提供的一纸出厂合格证明就轻易判定该表全部性能合格,那就有些为时过早.因此,为了确保仪表在今后的工作过程中其测量结果的可靠与准确,就有必要在正式安装前将其送往具有这方面检定能力及资质的部门进行一次全流量范围内的系统检定。3.搞好工艺安装  虽然该种仪表对工艺安装及使用环境没有太多的特殊要求,但任何一类流量测量仪表都有这样一种共性,即尽可能避免振动及高温高热环境,远离流态干扰元件(如压缩机,分离器,调压阀、大小头及汇管,弯头等),保持仪表前后直管段同心及内壁光滑平直,保证被测介质为洁净的单相流体等等。4.加强后期管理  该种仪表虽然具有多种自动处置功能和微功耗的特点,但投运之后仍需加强管理。比如,为了保证仪表长期工作的准确性,可靠性(避免意外停运和数据丢失),就应定期:进行系统标校(每1~2年),抄录表头数据(每天或每周),更换介质参数(每月或每季)以及不定期查看电池状况,检查仪表系数及铅封等。3.注意内部维护  如果由于气质脏污或其它原因需要对仪表的测量腔体及其构件进行定期检查或清洗,那么有一点则必须特别注意:对于同规格的旋进旋涡流量计,其旋涡发生体,导流体等核心组件不能互换,否则,须重新标定仪表计量系数并对其配带的温度及压力传感器进行系统校正。1、旋进旋涡流量计无机械可动部件,耐腐蚀,稳定可靠,寿命长,长期运行无须特殊维护;2、采用16位电脑芯片,集成度高,体积小,性能好,整机功能强;3、智能型流量计集流量探头、微处理器、压力、温度传感器于一体,采取内置式组合,使结构更加紧凑,可直接测量流体的流量、压力和温度,并自动实时跟踪补偿和压缩因子修正;4、采用双检测技术可效地提高检测信号强度,并抑制由管线振动引起的干扰;5、采用汉字点阵显示屏,显示位数多,读数直观方便,可直接显示工作状态下的体积流量、标准状态下的体积流量、总量,以及介质压力、温度等参数;6、采用EEPROM技术,参数设置方便,可*保存,并可保存长达一年的历史数据;7、转换器可输出频率脉冲、4-20mA模拟信号,并具有RS485接口和HART协议,可直接与微机联网,传输距离可达1.2Km;8、配合本公司的FM型数据采集器,可通过因特网或者网络进行远程数据传输;9、压力、温度信号为变送器输入方式,互换性强;10、旋进旋涡流量计整机功耗低,可用内电池供电,也可外接电源。孔板流量计是利用流体的动静压能转换原理进行流量测量的,这一-差压与流体流量存在如下关系:   式中:qm为质量流量,kg/h;qv为工况条件下的体积流量,m³/h;x为流量系数;e为流束膨胀系数;△e为差压,Pa;Q为工况条件下被测流体的密度,kg/m³;d为工况条件下的节流开孔直径,mm。由(1)式和(2)式可以看出,被测流体的流量是流体的密度和孔板前后差压的函数。当测得某一差压时,由于所测流体的密度不同,所代表的流量是不同的,只有当流体的密度值等于孔板流量计设计条件中的密度值时,差压才能真实反映所测的流量。蒸汽从发生到使用,由于热损耗,温度和压力的下降是不可避免的,导致其密度与设计值的差异,从而产生了误差,并且随着蒸汽参数的波动而波动,实际测量时只能通过温压补偿来修正,补偿公式的严谨性直接影响测量误差。1.差压管路堵塞,疏通差压管路;2.差压计故障,检查差压计;3.差压变送器示值明显偏离,应检查尺示值;4.节流元件安装方向有误,重新安装节流元件;5.被测介质工况参数与设计节流装置时采用的参数不一致,按相关公式修正,必要时应重新计算差压值;6.孔板流量计前后直管段长度不够,应调整直管段长度;7.直管段内径超差,实测直管段内径,重新计算最大流量;8.节流孔径超差,实测节流孔径,重新计算最大流量;9.节流元件变形,更换节流元件;10.节流元件上有附着物,清洗更换节流元件;11.孔板的尖锐一侧应该迎向流体流向为入口端,呈喇叭形的一侧为出口端。如果装反了,显示将会偏小很多 。  解决办法:检查孔板安装方向,正确安装孔板。12.孔板的入口边缘磨损,如果孔板使用时间较长,特别是在被测介质夹杂固体颗粒等杂物情况下,都会造成孔板的几何形状和尺寸的变化,如果造成开孔变大或开孔边缘变钝,测量压差就会变小,流量显示就会偏低。  解决办法:对孔板进行重新加工。13.变送器零点漂移:如果使用时间较长,变送器的零点可能会发生漂移,如果是负漂移,显示压差将会减小,显示的流量也会减小。  解决办法:对变送器的零点进行校正。14.上下游直管段长度不够,上下游直管段如果不够长,气体将得不到充分发展,会使计量结果造成较大误差,如果上游在规定直管段内存在多个弯头,将使计量结果偏低。  解决办法:改造蒸汽管道,是上下游直管段长度达到规定要求。在节流装置前加整流器。15.差压变送器的三阀组漏气,如果三阀组中的高压阀货平衡阀漏气,将会导致测量差压值减小,测量结果就会偏低。  解决办法:如果三阀组中的高压阀门漏气,将该阀门进行紧固,必要时进行更换,如果三阀组中的平衡阀内漏,将该阀门进行紧固,必要时进行更换。vse流量计德国VSEAHM01-2S G1/8N流量计资料由于超声波流量计传感器的安装位置,被测管路的状态对测量精度有很大影响,因此请选择满足下列条件的场所。1.管道圆度好,内表面光滑,管壁均匀。2.上游侧5D,下游侧3D以上的直管段,注“D为管道内径”。3.被测管路必须充满液体。4.必须有足够的空间易于传感器的安装与操作。5.在水平的被测管路,传感器不应装在管道的顶部和底部,并避开管道凹凸不平及有焊缝处。超声波流量计传感器的安装1.在已定的安装位置周围比传感器约大一倍的面积上,将管壁上的油漆、铁锈、污垢等清除干净,擦净露出金属应无凹凸不平。2.将紧固件安装在管道上,用不锈钢带将其固定在管道上,不应松动。3.铺设好电缆由电缆接入孔接到接线盒中的接线端子上。4.每个传感器换能器正面,涂上一厚层耦合剂(黄油)后,将传感器换能器面与管壁接触,放置在紧固组件中,并用压紧盖板将传感器压紧,耦合剂应从传感器四周的缝隙中挤出,形成一道密封条。紧固螺铨钮紧,注意四个螺铨用力要均匀,不要使传感器偏移。1.环境条件  电磁流量计安装分为两种:一体式和分体式。(1)现场和环境较好的条件下,一般选用一体式,即传感器和转换器组装成一体。(2)分体式电磁流量计即传感器和转换器分开装于不同地点,一般出现以下情况时选用分体式:①环境温度或流量计转换器表面受辐射温度超过60℃;②管道振动较大的场合:③对传感器的铝壳严重腐蚀的场合:④现场湿度较大或有腐蚀性气体的场合:⑤流量计装在高空或不方便调试的场合。2.防爆及防护等级  根据环境要求,选择本安、隔爆型电磁流量计或普通型,并且满足一定的防护等级,按规范进行安装,提高仪表的安全性。3.电极材料  导电介质在电磁流量计管内通过时,在外加磁场的作用下产生感应电势,电极的作用就是把产生的电动势引出来,然后放大、输出标准信号。电极直接跟介质接触,因此,应根据介质的化学性质,选择合适的电极,以免出现腐蚀。常用的电极材质有钽、钛、316L、HC、铂铱合金、碳化钨等。4.接地环或接液环  电磁流量计的输出信号比较小,一般只有2.5~8mV,小流量时信号可能低至几微伏,外界稍有干扰就会影响测量精度。因此,仪表外壳、测量管、介质、仪表屏蔽线等要做好等电位连接,并进行可靠、单独接地。与介质连接的金属部.分,就叫接地环或接液环。接地环的材料选择--般考虑经济性和耐腐蚀性,对于大口径的金属管道上的电磁流量计,为了节约成本,可以不设接地环,将流量计的法兰和管道连起来然后再接地;如果电磁流量计用在小口径的管道上或用在非金属管道上,必须设置接地环。5.内衬材料  内衬主要作用是绝缘,预防电极短路,同时保护测量管不受介质腐蚀。常用的内衬材料包括:聚氨酯橡胶、PFA、天然软橡胶、EPDM橡胶,选择时应根据介质温度、腐蚀性、是否含有固体颗粒、耐磨性能等情况,选择合适的内衬,延.长仪表使用寿命。6.供电电源  一般厂家的电磁流量计采用四线制接线,信号线与电源线分开,可以采用交流220V电源供电,也可以采用直流24V电源供电。原则上采用直流24V安全电源供电,特别是在易燃易爆的环境。1、孔板流量计计量天然气的优势分析1)孔板流量计的结构组成比较简单,性能稳定可靠,节流装置运行稳定安全,整体使用寿命较长,且成本较为低廉,综合效益优势突出,校验检测质量合格。2)孔板流量计能够使区域性液体流动速度增加,降低静压力标准,产生压差,通过对压差进行测量的方式来评估待测定区域内流体流量的大小,故而测量精度较高,误差小。3)孔板流量计生产制造过程当中的相关检测件以及差压显示仪表能够由不同的生产厂家进行生产制造与供货,具有专业化、规模化生产的价值与潜力。4)由于孔板流量计在作用于天然气计量的过程当中,标准节流件为全世界通用,且有大量的国家、国际、行业标准作为支持,实际应用中不需要进行实流校准,操作步骤简单,质量控制可靠,且数据精度有所保障。2、孔板流量计计量天然气的误差消除1)要求从设计安装的角度入手,重视对孔板流量计作业质量的严格控制。当前我国存在大量标准的孔板流量计安装操作规范,当中对孔板流量计在安装过程当中的各项技术指标进行了详细、精确的规定。同时,安装期间还要求根据孔板前阻力件的结构形式,对应配置长度符合要求的直管段,工程实践中同时要求,直管段长度应当挖制在≥30d单位以上。若受客观环境条件影响,无法满足这一一要求,则需要在直管段上通过增设整流器装置的方式缩短安装长度。安装期间,还要求对孔板流量计入口端相对于管道线的方位进行控制,垂直角度90.0°进行控制,偏差应当严格控制在±1.0°范围之内。2)要求从应用维护的角度入手,重视对脉动流的消除与控制。为了最大限度的消除孔板流量计作业期间的脉动流,需要将天然气当中的水分最大限度的从管线中脱出出来,具体的技 术措施为:管道低处安装分液器,消除管线内部所累积的积液。与此同时,还需要在确保孔板流量计自身计量性能的基础之上,合理控制测量管道内部内径参数,同时合理提高管道差压取值标准。除此以外,还可以在测量点以前的入口端增设调压阀部件,使孔板流量计计量期间的输出压力能够取值比较稳定。相同类型的方法还有:将缓冲罐加装在测量管道以前位置,使气体能量能够得到及时的储存与释放,达到对抗差压波动的目的,避免天然气计量作业期间,脉动现象对计量精度所产生的不良影响。1.被测介质电导率  电磁流量计测量的流体必须是导电的,一般只要电导率超过阈值,即使变化也不影响测量值,但低于阈值将会增大测量误差;通常要求液体电导率不小于5μS/cm,去离子水电导率不小于20μS/cm。2.被测介质温度  电磁流量计一般只能用于工艺介质温度不高于180℃的场合。选型时,要根据被测工艺介质的温度范围,选择测量管内衬材料及传感器线圈的漆包线的耐温等级。常用测量管衬里材料有聚四氟乙烯(PTFE),适用温度范围-40~+180℃;氯丁橡胶(Neoprene),适用温度<65℃;聚氨酯橡胶(Polyurethane),适用温度<65℃;3.当被测液体为酸、碱、盐等高腐蚀性介质时  因为电磁流量计仅测量管衬里和电极与被测介质接触,所以只要选好这两者的材质即可。耐酸、碱等强腐蚀性介质的衬里常选用聚四氟乙烯(PTFE),耐磨损类如矿浆、结晶类介质的衬里可选用聚氨酯橡胶(Polyurethane)。对于电极材质的选,择,一般可查有关防腐蚀手册[2],对于混酸等成份复杂的介质,应做挂片试验。4.当被测液体为脏污流(两相,浆液等)介质时(1)当介质含有固体颗粒时,水平安装易使下半部内衬及电极磨损严重,这时选用垂直安装较好;衬里要选用高耐磨性材料,如陶瓷或聚氨酯橡胶;电极则采取--些结构措施以防磨损漏液。(2)测量会在管壁附着和沉淀的物质的流体时,应注意电极的污染。可选用刮刀式、可更换式。管壁的附着则可用提高流速以起到自清洗作用,或采取比较方便易清洗管道的连接方法。(3)含有非磁性颗粒或纤维的固液两相流时,如浆液擦过电极表面会产生尖峰噪声,使信号不稳,可选用市电交流激磁或双频激磁仪表。5.工艺介质的流速  仪表口径是根据管道内平均流速而定的,通常选用与管道相同的口径或略小些。一般工业输水管道经济流速为1.5~3m/s,易粘附沉积结垢物质则提高到3~4m/'s或更高,矿浆等磨蚀性强的为2~3m/s。电磁流量计的液体流速范围可在1~10m/s之间选用。原理上,上限流速并没有限制,满度流量的流速下限一般为1m/s,有些产品为0.5m/s,低于此流速,从测量准确度出发应改用小管径,以异径管连接到管道。但加装异径管要注意压力损失的问题。图1为流量计口径、流速与流量关系的曲线图,计算仪表口径时可参照。6.大口径时电磁流量计的选择  电磁流量计按安装形式可分为管道式和探头式。一般优先选用管道式电磁流量计;当工艺管径较大且考虑设备费用时,或安装时不允许管道停流的情况下,可选用探头式电磁流量计(精度可达0.5级)。(1)探头式可装配球阀,可在管道不停流情况下拆、装,利于仪表的在线安装和维护。(2)探头插入深度只需很短,对管道阻力小。--般在直管段足够长时,采用平均流速点测量法,这种方法的测量精度基.本不受雷诺系数变化的影响,探头的插人深度仅为R=0.121D;当直管段较短时,一般采用中心流速点测量法,插入深度R=0.5D(其中D为管道直径)。7.工艺管道材质  若连接仪表的管道是(相对于被测介质)金属导电性的,不需要接电环,若是绝缘性的,则要用接地环,可用普通型,它的材质应与被测介质的腐蚀性相适应。若被测介质是磨损性的,则宜选用带颈接地环,以保护进、出口端的衬里,延长使用寿命。8.安装仪表的工艺管道段的敷设位置  电磁流量计的安装形式可分为三种:一体型、分离型和潜水分离型(IP68)。一般情况选用一体型,它将流量计的传感部分和转换部分(表头)装于一体,便于安装使用;当管道敷设的位置较高不便观察或安装在环境差的场合,可采用分离型,分离长度一般不超过30m;当传感器需要安装在井下、水下的被测现场管道上时,需要选用潜水分离型。1.为了保证电磁流量计测量管内充满被测介质,变送器最好垂直安装,流向自下而上.尤其是对于液固两相流,必须垂直安装。若现场只允许水平安装,则必须保证两电极在同一水平面。变送器两端应装阀门和旁路。2.电磁流量计信号比较弱,满量程时只有2.5~8mV,且流量很小时,只有几微伏,外界稍有干扰就会影响到测量精度。因此,流量计的外壳、屏蔽线、测量导管都要接地。并要单独设置接地点,决不能连接在电机、电器等公用地线或上、下管道上。3.为了避免干扰信号,安装地点要远离一切磁源(如电机、变压器等),不能有震动。变送器和转换器之间的信号必须用屏蔽导线传输。不允许把信号电缆和电源线平行放在同一电缆钢管内。信号线越短越好,长度一般不得超过30m。转换器应尽量接近变送器c4.为了避免流速分布对流速的影响,产生测量误差。流量调节阀应设置在变送器下游. 因此,在电磁流量计前必须有5~10D左右的直管段,以消除各种局部阻力对流线分布对称性的影响。德国VSEAHM01-2S G1/8N流量计资料1.传感器设计  设计先进的传感器。涡街流量计传感器电容极板的基体在高度下成型。抗高压特性,使核心元件的内部结构提升。现代流场分析技术。对传感器的具体结构以及安装位置进一步改进,增强抗振性能,可以消除各个方向的干扰,搅动,使涡街在流动情况下的抗干扰能力,时域毛刺快乐,频城户外活动稳定。频带能自动跟踪,无须电位器或拨动开关调整频带和灵敏度,无零漂移,量程自由设定,真正实现现场免调试。2.先进性现场总线设计  采用全数字化现场总线的智能涡街流量计。目前,研究现场总线技术是智能仪表的焦点。可以考虑实际需求,增加HART总线接口,该模块采用抗干扰能力强,通信速率高,数据精确高的电路来完成传输数据,它真正RS .485总线通信的抗干扰能力强的特点,又具有输出信号为二线制4~20mA的工业标准,根据各自的通讯,完成HART协议数据协议层和应用层的设计,实现HART总线通信功能.3.先进的数字信号处理方法的设计  应用更先进的数字信号处理方法,能更好地解决干扰问题,提高测量精度,进一步提高的敏感信号与涡街信号在频谱的现场研究,当两种信号频率在研究同一频段且频率非常接近时,无法检测到这两种信号和消除噪声信号的作用,对涡街信号分析的干扰等。塑料则,吸收它分频特性好,会造成光纤精度高。同时,靠近涡街频率的微细滤网,将影响测量精度,还需要研究函数的选择、因此,瀑布幅频特性和中心频率的如何调整频率和采样点数确定,以及在软件编程中如何优化算法,使量少、内存占用量少和性能小,以保证体积小。实时性好和计算精度高等问题。研究强干扰噪声不为基础创建噪声的模板,考虑建立--种通用的模板,真正解决干扰下涡街信号和噪声的判别、分离及提取问题,在传感器条件一定的情况下,考虑利用信号处理技术扩大流量程比,提高小测量精度,全面深入研究流场噪声以及他们对涡街流量计信号影响等。根据流量计设计要实现的功能,智能金属管浮子流量计的硬件系统实现方案如图2.1所示:本系统主要分为三部分:信号采集模块、信号处理模块以及输出和显示模块,下面将对这三个模块进行简要介绍。(1)信号采集模块:此模块用来实现信号采集功能,系统中核心要采集的是流量信号,除此之外,还需要采集温度和压力信号。这是因为当被测流体为蒸汽时,其密度随温度和压力的变化而变化。为了准确计算出流体的流量,必须要考虑温度和压力变化对流体密度的影响。因此,设计中要实现流量、温度以及压力三种信号的采集。(2)信号处理模块:信号处理模块的基本功能是实现信号的放大、滤波以及A/D转换。此外,系统中采用微控制器MSP430F149对采集信号进行计算、补偿,线性化等智能化处理。(3)输出及显示模块:设计中使用E2PR0M保存累积流量值以及仪表参数值,并将流量信号转换为4?20mA工业标准电流信号输出。同时,使用LCD实时显示瞬时流量和累积流量,最后将金属管浮子流量计测量结果通过CAN总线传送给上位机显示。热式气体质量流量计是流量计发展历史的一次重大变革,使流量测量直接转变为质量流量的测量.根据测量时热式质量流量计所使用的流量测量元件的加工工艺的不同,常用的传感器探头可以分为:热线热式流量传感器、热敏电阻式传感器、半导体集成电路式传感器等.  热式流量传感器探头对流体运动形态的影响较小,测量范围大,响应性能也很好,但是,这种类型的传感器探头对机械强度要求较高、在传感器材料选择上受到较大的限制;同时,加热温度仅能达到400~500℃.此外,由于流体中的微小颗粒容易粘附到热线上,抗污染腐蚀能力较差,易损坏使热线的特性发生不稳定性变化,热线一致性差,难以进行批量生产.  半导体式传感器探头是以单晶硅为基体,使用硅微机械加工而成的微桥结构.半导体式传感器探头多用于0~25mL/min 的小流量气体的测量,在本课题中所需要测量的流量范围较大,不能满足使用要求.图2-2是典型的半导体式传感器探头结构.  热电阻式传感器主要有两个探头:一个流量探头(Rp),一个温度探头(Rtc).目前,市场上所使用的大部分热式气体质量流量计传感器探头主要是基准铂电阻.工作的时候,两个探头以一定的机械结构固定于管道中,可以通过热源探头上电压信号量或者加热功率的改变来衡量流量的变化.工作中要求两个传感器探头对流量的响应尽可能的快,且要保证散热同步,传感器探头的灵敏度最高,这为传感器探头的设计增添了一定的难度.  如图2-3铂电阻的典型结构所示,铂电阻在在管道内与流体进行热交换的过程中,铂电阻的表面和内部铂丝之间存在热阻,阻碍热量的交换.因此,必须从铂电阻元件的选择和传感器结构设计两方面进行设计,尽量减小铂电阻内部和表面的热阻.如果热阻较大,热敏电阻表面和内部就会存在很高的温度差高,出现流量探头和温度探头已经达到恒定温差的假象,会严重影响控制电路正常工作,使测量的结果与管道流量的实际状况出现较大偏差,所以减小探头的热阻是设计热电阻式传感器的关键.1)电磁流量计:电磁流量计工作原理基于电磁感应定律。当具有一定导电率的液体在磁场中移动时,产生电动势。国内外使用这类流量计较多,它具有准确度高量程较大、无水头损失、直管段要求短等优点。但造价随着管径增大而成倍增加。2)插入式涡轮流量计:插入式涡轮流量计是将旋转叶轮的涡轮头与不锈钢杆连接插入管中的装置。当流体流动冲击涡轮叶片转动时,用测量涡轮的转速来反映流体流量。它只能测知管内某点的流速靠仪表系数来推算平均流速。分切向式涡轮头和轴向式涡轮头两种,安装或维护时可以不断水;造价相对较低。3)超声波流量计:超声波流量计近年来在国内外给水行业大口径水管上用得较多。它具有准确度高量程大、无水头损失、安装方便等优点:其造价不因管径增大而增加,适用于较大管径场合。此类仪表从原理到结构都很复杂,故障排除较困难。4)涡街流量计:涡街流量计是利用管内水流遇障碍物(挡体)产生震荡运动的规律制成的震荡现象称卡门涡街。由于没有可动部件和感压孔,所以不宜受水中杂质影响,也不宜磨损或发生障碍,但管中流速不宜太低。5)均速管、文丘利流量计:均速管是一种多孔采集断面流速即能测知平均流速的装置其优点是便于安装水头损失小造价较低;缺点是流速低时,压差较小,准确度低。文丘利流量计是-种比较可靠稳定性好的流量计,但造价较高。

QQ咨询

在线咨询 真诚为您提供专业解答服务

咨询热线

13905314198
7*24小时服务热线

关注微信

二维码 扫一扫添加微信
返回顶部