德国VSEAPG流量计制造
编辑:admin
浏览量:59
发布日期: 2022-05-10 10:51
德国VSEAPG流量计制造同时我们还经营: 考虑到容积式流量测量装置结构较复杂,安装维护和校准不方便,有必要在满足精度和抗震.性能要求的前提下,采用安装和维护方便的其他形式流量测量仪表。热式气体质量流量计已在气体流量测量领域获得了成功的应用,具有无可动部件、压损小及量程比宽等特点,例如在核电厂的通风系统中,已成功地替代皮托管成为重要的测量方式。但在液位流量测量领域,热式质量流量计的应用仍具有局限性。 由式(2)可知,热丝的热散失率与流体的热导率、比热容、流速和密度有关。相对于通风系统中的空气来说,水是-种具有较大比热容、较大密度和热导率的介质。在相同的流速下,水带走的热量远大于空气,对于以恒定功率加热热端铂电阻的恒功率型热式质量流量计,为了适应水流量的测量,加热电路会采用比较高的加热功率为热端铂电阻进行加热;对于恒温差型的热式质量流量计,为了维持两个铂电阻之间恒定的温差,加热电路同样会处于比较高的加热功率状态下,且加热功率将随水流量的增大而增大。因而,无论是恒功率型还是恒温差型,加热功率的提高会对流量计的安全性和寿命有很大的影响,也使其应用环境造成一定的局限性。而恒比率式流量计由于通过调节施加在热端热电阻上的加热电流,使热端热电阻的阻值与冷端热电阻的阻值成一恒定比率,因而同恒温差式流量计相比,在测量相同流速流体的情况下,恒比率式流量计热端铂电阻的加热电流要小于恒温差式,因而其加热功率不会过高而产生仪表安全性和使用寿命方面的不利影响。对于主泵第三级密封泄漏流这种微小流量的测量,相对于恒功率式和恒温差式,恒比率式热式质量流量计具有更好的应用价值,然而对于较大液体流量的测量则并不适用。恒比率式流量计的热端铂电阻加热电流Ih与介质质量流量m的关系为: 式中Ap-一流体流经管道的截面积; As一传感器参与热交换部分的表面积; C1、C2一通过校准确定的常数; d一热电阻传感器直径; k一流体热导率; Ls一传感器损耗能量的因数; n一校准过程中通过回归确定的指数; Pr一流体的普朗特数; Rc一冷端铂电阻阻值; Rco一冷端铂电阻在0℃时的阻值; RH一热端铂电阻阻值; RH0一热端铂电阻在0C时的阻值;, r一恒比率参数(自加热系数),r= a一铂电阻的参数。 1.基本性能 热式质量流量计作为一种直接测量质量流量的智能型流量仪表,具有结构简单、体积小、数字化程度高及安装方便等优点。热式质量流量计的.测量精度一般约为±1%,重复性为±0.2%;量程比宽可达100:1,最高可达1000:1;在-40~60℃的环境温度下可正常工作;可耐受3MPa或更高的管道压力;允许介质工作温度-70~400℃;允许被测液体的流速为0~4m/s;支持HART协议。另外,具有压损小、直管段要求低和允许动态修正的特点,其响应时间较长,未采用特殊设计时可达几秒。热式质量流量计具有一体式和分体式两种.结构,在累积辐照剂量较大区域,可采用分体式流量计进行测量,信号处理部分布置于累积辐照剂量较小区域。 主泵第三级密封泄漏流正常工况下在5L/h左右,达到50L/h时报警,不用于过程控制。在电厂正常运行工况下,测点所在区域的环境温度约为50℃以下,工作压力小于0.6MPa,工作温度小于100℃,要求测量范围的量程比约为30:1,属于非1E级测点。因此,就测量要求而言,热式质量流量计适用于主泵第三级密封泄漏流量的测量。 2.抗震性能 由于主泵第三级密封泄漏流测点位于安全壳内,周围存在1E级仪表和核级管道,尽管测点本身不需要在设计基准事件工况下执行功能,但不应对其他需要执行功能的设备或仪表造成损害,因而用于该测点的仪表应满足抗震要求,在SSE地震载荷下,满足结构完整性的要求,避免放射性物质经仪表破口向环境释放以及对周围1E级仪表和核级设备产生潜在危害。 热式质量流量计结构简单,除进行抗震试验外,抗震分析亦可用于分析其抗震性能。在抗震分析中,需要重点对薄弱部位进行应力分析,通常包括传感器与管道相交的节点处、螺纹连接处及法兰连接处等位置。 对某一型号热式气体质量流量计进行抗震分析,取三向峰值加速度为6g。通过应力分析表明,流量计的第一-阶自振频率大于33Hz,在地震载荷作用下,薄弱部位的计算应力值均小于规定的应力限值,从而认为其在SSE地震载荷下,结构完整性可以得到保证。 3.耐辐照性能 因主泵第三级密封泄漏流测点位于安全壳内,在电厂正常运行工况下,探头所处的环境具有一定的电离辐射存在。因而,用于该测点的仪表应能经受--定的累积辐照剂量而测量结果仍在要求的测量精度范围内。目前,对于仪表的耐辐照性能,主要采用试验法进行验证。 对某一型号分体式热式质量流量计探头进行耐辐照试验,辐射源采用钴-60,试验时间持续40h以上,累积辐照剂量约2x104Gy,辐照后进行功能试验,流量计的输出维持在测量精度范围内,表明该型流量计可以经受若干年的累积辐照剂量而不损坏。 4.安装 为便于安装和维护,流量计可采用法兰-法兰连接的形式。在一般情况下,为了满足测量精度,热式质量流量计对于前后直管段的要求较高,部分型号的流量计要求的直管段长度可达到前15D、后5D以上。但由于流量计允许动态修正,经过标定和修正后,可降低热式质量流量计的前后直管段要求。对于主泵第三级密封泄漏流的测量,热式质量流量计可满足安装和维护要求。磁翻板液位计常用介质: 热水,盐水,氯水,液化石油气、液氨、乙烯、乙烷,汽油、柴油,食用油,丁二烯,甲醇、环氧(丙烷),二甲苯、轻油、乙醇(酒精),丙酮、氨水、粗苯、啤酒、重油、牛脂、乙苯,水、醋酸、樟脑油,盐酸、焦油、氯磺酸、硝基苯、FR-22,液碱、麦芽糖、20%稀硫酸、硫酸二甲酯,液氯、稀硫酸、浓硝酸、FR-12、氯仿,8%硫酸、发烟硫酸、高氯酸、溴水磷酸、氟油等等。磁翻板液位计应用行业 电力行业:高/低加,除氧器,凝汽器,锅炉汽包,热井,输水箱,油箱,热网加热器,化学水处理,脱硫脱销工程等 化工行业:罐区,化学池等,储罐,贮槽,反应釜 煤化工:甲醇、二甲醚、合成氨/尿素、煤制烯烃、煤制油等 冶金行业:冷却水处理 水处理行业:氧化池,沉淀池,水箱,水池等等 在工业生产中,液位计是必不可少的一环,具有重要的作用。电磁流量计中通常采用两类基本的励磁波形,一种是方波,另一种是正弦波。在正弦波励磁模式下,可以有效的降低流体介质对电极的极化作用,能直接波。在正弦波励磁模式下,可以有效的降低流体介质对电极的极化作用,能直接测量管道产生巨大的涡流损耗和磁滞损耗,同时也给测量带来由电磁感应引起的同相和正交干扰。在方波励磁模式下,由于电极会出现极化现象,导致采集的感应电压信号不够准确。方波励磁模式中,在测量非导电液体时,相对较高的励磁频率,比如10Hz到200Hz,可以用来获得好的动态特性或者获得合理的信噪比,但是这种励磁方式有一个严重的问题,其变压器效应会引起流量计的零点漂移并影响测量精度。 为了避免以上极化现象和变压器效应,减少干扰,本文研究中采用了一种三值方波励磁方式,如图4-5所示,线圈的励磁信号有正、零和负三种值。 本文采用固态继电器和直流电源的方式产生三值方波励磁电压,其结构如图4-6所示。 在该电磁流量计励磁方案中,使用LabJackU12控制输出三值方波的模拟量电压信号,通过4个固态继电器组成的开关系统,直接作用到励磁线圈上。针对传统电磁流量计用信号电缆的易受电磁干扰和内部产生较大噪音的性能缺陷,首先根据电磁流量计用信号电缆的特点及其运行环境要求设计了多种结构方案,而后综合考虑电缆抗电磁干扰水平、内部噪音水平、工艺的实现难度和制造成本等因素对相关设计方案进行反复筛选,最终确定了新型低噪音电磁流量计用信号电缆的结构。 该新型电缆的结构如图1所示。导体为单股退火镀锡软铜线,以提高导体的导电性和防腐蚀性。在导体外绕包一层薄F4(聚四氟Z烯)半导电带,有利于降低导体和绝缘之间的摩擦起电噪音。绝缘采用材料较为纯净.介电常数较小具有一定弹性的聚丙烯绝缘级材料,并采用挤压式挤出,减小绝缘层与导体的向隙。采用对绞组作为信号传输线,由于在两根传输线上感应的电压接近相等,减小了电压差值,提高了信号传输稳定性;对绞组由两种不同颜色绝緣线芯组成,相邻线对对绞节距应不大于100mrmn。对绞分屏蔽纪(即对对绞组进行分屏蔽,每对对绞组外绕包两层聚酯带和--层厚0.04mm铝塑复合带绕包,内置-根7X0.26mm镀锡铜绞线作引流线)有利于对不同对绞组之间信号中音的抑制和隔离。对绞分屏敞组同心式绞合成缆,在对绞分廉蔽组间]填充非吸湿性材料,以保证缆芯圆整。在成缆缆芯外绕包两层聚酯带,再采用铝塑复合带绕包,内置镀锡铜线作引流线,以提高电缆电磁屏蔽能力。总屏敞层外挤包隔离层(隔离护套).隔离层采用绝缘级低密度聚乙烯材料。隔离层外采用铠装层,铠装材料为高导磁合金钢带.其为强磁材料,叮将外来的磁通大部分限制在铠装层的外表面上(仅布少部分能进.人被屏蔽的空间);铠装时对高导磁合金钢带采用纵包焊接,确保其形成.连续圆杜管;铠装层可提高电缆抗电您T扰水平以及对电缆进行加强,减少电缆振动引起的电动势。外护奈采用监色软PVC(聚氯乙烯)护层级电缆材料挤包,实现电缆防护。 该新型低噪音电磁流量计用信号电缆通过开发新的结构和选用新的材料具有了高抗电磁干扰能力和优异的低噪音性能,可实现信号的高分辨率、高精度和稳定传输:a.通过采用绝缘线芯对绞、对绞铝箔分屏蔽、引流线设置、铝箔总屏蔽、全封闭钢合金铠装屏蔽等综合设计,对内外部电场和磁场形成有效的屏蔽隔离,抑制了内部串音,降低了信号传输的波动性,大大提高了电缆的抗电磁干扰水平,提高了电缆传输信号的准确性和可靠性。在实际工程安装中,电缆也不必穿金属管敷设,可降低工程成本。b.采用镀锡导体以及导体外设置F4半导电带,有利于降低导体和绝缘之间的摩擦起电噪音,同时电缆整体设计结构紧凑,尤其是钢合金铠装层的设计,使得电缆内部相对滑动少,一定程度上也减少了电缆内部摩擦起电噪音的产生,这样可以将原始噪音降低2~3个数量级,极大地提高了传输信号的分辨率和精度,减小了电磁流量计的计量误差,大大提高了电磁流量计的计量准确性、精确性和可靠性,完全可满足微量精确计量场合的使用要求。

德国VSEAPG流量计制造为了适应仪表网络化的发展方向,在系统设计时我们要根据实际需要为电磁流量计配备合适的通信接口.在当今单片机系统的通信中,RS232和RS485标准总线应用最为广泛,技术也最为成熟.RS232用来连接两台计算机(微处理器)之间的串口通信,当我们需要一个更长的距离或者比RS232更快的速度下进行传输的时候,RS485就是一个很好的解决办法.另外,RS485连接不限于仅仅连接两台设备.根据距离,比特率和接口芯片,我们可以用单一导线连接最多256个节点.为了使电磁流量计的应用范围更加广泛,我们选用RS485标准总线来实现仪表和外部系统的通信. RS485是双向、半双工通信协议,允许多个驱动器和接收器挂接在总线上,其中每个驱动器都能够脱离总线.该规范满足所有RS422的要求,而且比RS422稳定性更强.具有更高的接收器输入阻抗和更宽的共模范围(-7V至+12V). 接收器输入灵敏度为士200mV,这就意味着若要识别符号或间隔状态,接收端电压必须高于+200mV或低于-200mV.最小接收器输入阻抗为12k,驱动器输出电压为±1.5V(最小值)、+5V(最大值). 驱动器能够驱动32个单位负载,即允许总线上并联32个12k的接收器.对于输入阻抗更高的接收器,一条总线上允许连接的单位负载数也较高.RS485接收器可随意组合,连接至同一总线,但要保证这些电路的实际并联阻抗不高于32个单位负载(375). 采用典型的24AWG双绞线时,驱动器负载阻抗的最大值为54,即32个单位负载并联2个120终端匹配电阻.RS485已经成为POS、工业以及电信应用中的最佳选择.较宽的共模范围可实现长电缆、嘈杂环境(如工厂车间)下的数据传输.更高的接收器输入阻抗还允许总线上挂接更多器件. 因RS485接口具有良好的抗噪声干扰性,长的传输距离和多站能力等上述优点就使其成为首选的串行接口.因为RS485接口组成的半双工网络一般只需二根连线,所以RS485接口均采用屏蔽双绞线传输.RS485接口连接器采用DB-9的9芯插头座,与智能终端RS485接口采用DB.9(孔),与键盘连接的键盘接口RS485采用DB.9(针). 通信接口电路如图3.13所示,我们选用MAX485作为系统的通信接口芯片.MAX485是MAXIM公司推出的支持RS485协议的低功耗收发器,它的驱动器摆率不受限制,可以实现最高2.5Mbps的传输速率.它是用于RS.485通信的半双工低功率收发器件,包含一个驱动器和一个接收器,具有输入接收器和输出驱动器使能管脚.使用一个半双工连接的难点就是控制每个驱动器在什么时候被启用,或者处于激活状态.当一个驱动器在传输的时候,必须直到它完成传输都保持被启用状态,然后在一个应答节点开始响应之前切换到禁用状态.MAX485的控制端RE和DE短接,这样用一个信号可以控制两种状态:接收和发送.RE和DE为“l”时,发送端接通,数据经DI脚后,变成传送的信号送到传输线.RE和DE为“0”时传输线上的信号经MAX485,当处于发送状态时,数据信号经发送端DI,在输出端A和B上交替出现高电平:当处于接收状态时,A和B上交替的高电平信号经MAX485转换成高低电平信号经RO输出.在电磁流量计传输过程中,交替的高电平保证通信传输回路中始终有电流,能实现可靠通信.电磁流量计测量的液体中会含有一些气泡,如果气泡分布均匀,则不影响测量。然而,一旦气泡变大,整个电极通过电极时会被遮挡,使流量信号输入电路瞬间开路,导致输出信号抖动 如何判断电磁流量计的测量误差是由被测液体中的气泡组成的?如何处理这种情况?简单介绍一下 当测量效果抖动时,磁场的励磁回路电流立即被切断。假设此时表面仍有闪烁和不稳定现象,说明大部分是由气泡效应引起的 在确定许多气泡影响电磁流量计的测量效果后,有必要寻找相应的处理方法。假设由于装置的定向,许多气泡混合到液体中。例如,如果电磁流量计安装在管道系统的高点,储存气体或从外部吸入空气,形成流量计的晃动 这是非常有用的方法来代替装置的定位,但在很多情况下,装置的直径很大,或者设备的方向不容易改变。建议在电磁流量计上游安装集气袋和排气阀,以清除残余气体,减少影响测量效果的因素,保证测量的准确性。德国VSEAPG流量计制造为了适应仪表网络化的发展方向,在系统设计时我们要根据实际需要为电磁流量计配备合适的通信接口.在当今单片机系统的通信中,RS232和RS485标准总线应用最为广泛,技术也最为成熟.RS232用来连接两台计算机(微处理器)之间的串口通信,当我们需要一个更长的距离或者比RS232更快的速度下进行传输的时候,RS485就是一个很好的解决办法.另外,RS485连接不限于仅仅连接两台设备.根据距离,比特率和接口芯片,我们可以用单一导线连接最多256个节点.为了使电磁流量计的应用范围更加广泛,我们选用RS485标准总线来实现仪表和外部系统的通信. RS485是双向、半双工通信协议,允许多个驱动器和接收器挂接在总线上,其中每个驱动器都能够脱离总线.该规范满足所有RS422的要求,而且比RS422稳定性更强.具有更高的接收器输入阻抗和更宽的共模范围(-7V至+12V). 接收器输入灵敏度为士200mV,这就意味着若要识别符号或间隔状态,接收端电压必须高于+200mV或低于-200mV.最小接收器输入阻抗为12k,驱动器输出电压为±1.5V(最小值)、+5V(最大值). 驱动器能够驱动32个单位负载,即允许总线上并联32个12k的接收器.对于输入阻抗更高的接收器,一条总线上允许连接的单位负载数也较高.RS485接收器可随意组合,连接至同一总线,但要保证这些电路的实际并联阻抗不高于32个单位负载(375). 采用典型的24AWG双绞线时,驱动器负载阻抗的最大值为54,即32个单位负载并联2个120终端匹配电阻.RS485已经成为POS、工业以及电信应用中的最佳选择.较宽的共模范围可实现长电缆、嘈杂环境(如工厂车间)下的数据传输.更高的接收器输入阻抗还允许总线上挂接更多器件. 因RS485接口具有良好的抗噪声干扰性,长的传输距离和多站能力等上述优点就使其成为首选的串行接口.因为RS485接口组成的半双工网络一般只需二根连线,所以RS485接口均采用屏蔽双绞线传输.RS485接口连接器采用DB-9的9芯插头座,与智能终端RS485接口采用DB.9(孔),与键盘连接的键盘接口RS485采用DB.9(针). 通信接口电路如图3.13所示,我们选用MAX485作为系统的通信接口芯片.MAX485是MAXIM公司推出的支持RS485协议的低功耗收发器,它的驱动器摆率不受限制,可以实现最高2.5Mbps的传输速率.它是用于RS.485通信的半双工低功率收发器件,包含一个驱动器和一个接收器,具有输入接收器和输出驱动器使能管脚.使用一个半双工连接的难点就是控制每个驱动器在什么时候被启用,或者处于激活状态.当一个驱动器在传输的时候,必须直到它完成传输都保持被启用状态,然后在一个应答节点开始响应之前切换到禁用状态.MAX485的控制端RE和DE短接,这样用一个信号可以控制两种状态:接收和发送.RE和DE为“l”时,发送端接通,数据经DI脚后,变成传送的信号送到传输线.RE和DE为“0”时传输线上的信号经MAX485,当处于发送状态时,数据信号经发送端DI,在输出端A和B上交替出现高电平:当处于接收状态时,A和B上交替的高电平信号经MAX485转换成高低电平信号经RO输出.在电磁流量计传输过程中,交替的高电平保证通信传输回路中始终有电流,能实现可靠通信.流量计中有一款叫做气体涡轮流量计,对于不常用到的用户来说肯定很陌生。如果您使用过此款流量计时一定会给它本身的优点所吸引。那么针对那些对于气体涡轮流量计认识不是很深的用户今天我们就来介绍一下关于气体涡轮流量计的组成还有它的工作原理更重要的还有它的仪表系数的计算方法介绍: 气体涡轮流量计是一种速度式流量计,是近些年来迅速发展起来的新型仪表,这种流量计具有精度高、压力损失小、量程比大等优点,可测量多种气体或液体的瞬时流量和流体总量,并可输出0-10mA?DC或4-20mA?DC信号,与调节仪表配套控制流量。气体涡轮流量计的组成 气体涡轮流量计主要由涡轮流量变送器和指示积算仪组成[1]。涡轮流量变送器把流量信号转换成电信号,由指示积算仪显示被测介质的体积流量和流体总量。气体涡轮流量计的工作原理 流体流经传感器壳体,由于叶轮的叶片与流向有一定的角度,流体的冲力使叶片具有转动力矩,克服摩擦力矩和流体阻力矩之后叶片旋转,在力矩平衡后转速稳定,在一定条件下,转速与流速成正比,由于叶片具有导磁性,它处于信号检测器(由永久磁钢和线圈组成)的磁场中,旋转的叶片切割磁力线,周期性地改变线圈地磁通量,从而使线圈两端感应出电脉冲信号,此信号经过放大器的放大整形,形成有一定幅度的连续的矩形波,可远传至显示仪表,显示出流体的体积流量或总量。气体涡轮流量计仪表系数的理论表达式 作用在涡轮上的力矩可分为以下几个:流体通过涡轮时对叶片产生的切向推动力矩M1;流体沿涡轮表面流动时产生的粘滞摩擦力矩M2;轴承的摩擦力矩M3;磁电转换器对涡轮产生的电磁反作用阻力矩M4。 由此可建立涡轮的运动微分方程:(1)式中:J为涡轮的转动惯量;ω为涡轮的旋转角速度;τ为时间。当流量恒定时,涡轮达到匀速转动,所以M1=M2+M3+M4。推动力矩可表示为:M1=a1qv2-a2ωqv (2)式中:a1、a2为与涡轮传感器结构和流体密度有关的系数;qv为流量,L/s。由于气体涡轮流量计在量程范围内属于紊流工作区,固以下计算只考虑紊流时的情况。反作用力矩中的M2,在紊流时可近似表示为:M2= a3qv2 (3)通常M3和M4相对于M2比较小,但为了提高计算精度,这里根据文献[3]推导出了它们的表达式:M3=a4ω2/3 (4)M4=a5ω3 (5)分别将式(2)、(3)、(4)、(5)带入式(1)并经整理可得:qv2 - a6ωqv = a7ω2/3 + a8ω3 (6)式中:a6、a7、a8为经整理后的综合系数。出现孔板流量计反向安装这种情况的原因有二:1.操作人员未进行岗前培训,技术不熟练,不熟悉工艺流程走向;2.由于操作人员在更换孔板,清洗检查节流装置,进行工艺改造安装时,或在进行训练的过程中,粗心大意,现场监督,检验不到位等.出现此情况时,孔板下游锐角边经缘朝向上游,其结果将直接影响计量偏低,反映在现场是差压下降一个台阶,而由于现场原因未能及时发现并纠正.其引起流量偏低的影响率,据国外实验研究资料数据为-12%~-17%,一般情况下,雷诺数不变时,高β值与低β值之间的流量偏差值为±2%,管径雷诺数越低,其流量偏差越大。 此外,在更换孔板以后,其配套产量计算参数必须同步更换,否则会出现相当大的正负偏差,若由小孔径换大孔径,参数未更换,则流量计量将偏高;反之,流量计量将偏低,在日输气量大的用户计量中,造成的损失将是很大,甚至是难以弥补的。 从以上分析,我们不难看出,孔板流量计反向安装,参数的错误是可以通过操作人员认真仔细的操作,培训来杜绝的,在天然气商品贸易结算中,是绝对不允许有此现象发生的,所以制定一套科学的严格的现场计量监督制度是很有必要且很重要的。1.对孔板流量计进行正确选型 选择孔板流量计,首先要考虑量程问题。有些是冬季用汽量相对大,而夏季用汽量相对较小,用汽量相差过于悬殊,那么孔板流量计在保证测量准确度的前提下,孔板流量计的流量范围就难以适应。因此,要明确最小流量(不是零)及最大流量,在此基础上选择符合相关运行参数的计量仪表。2.对孔板进行正确安装对于任何计量仪表都必须安装正确,否则就无法正常工作。正确安装孔板流量计,必须做到五点。①在所要安装计量仪表的前后必须留有足够长的直管段。②孔板流量计不能安装在整套管路最低处。③必须高度重视冷凝器的安装:两个冷凝器必须处于同一水平上,冷凝器的作用是使导压管中被测蒸汽冷凝;并使正、负导压管中的冷凝液面有相等高度;还必须保持长期稳定;还要充分考虑维护、拆换、吹扫便利。④导压管长度最好在16m以内,内径最好选用中10mm~016mm有防堵塞为好。导压管全程保温并确保正、负管处于同等温度以免密度变化引起误差。⑤装测温元件地方最好在节流件下游侧10D以外处,在管道或正压管上取压时,如压力变送器装在节流装置下方,必须对压力变送器的管路液柱值进行修正,以提高计量准确度。