关注微信 微信二维码
咨询热线: 0531-85960083
济南融恩机电设备有限公司
德国VSEAR800流量计参数资料
编辑:admin 浏览量:59 发布日期: 2022-05-09 09:30
德国VSEAR800流量计参数资料同时我们还经营:金属管浮子流量计安装要求:1、实际的系统工作压力不得超过金属管浮子流量计的工作压力.2、应保证测量部分的材料、内部材料和浮子材质与测量介质相容;3、环境温度和过程温度不得超过金属管转子流量计规定的最大使用温度;4、金属管转子流量计必须垂直地安装在管道上,并且介质流向必须由下向上;5、金属管浮子流量计法兰的额定尺寸必须与管道法兰相同.6、为避免管道引起的变形,配合的法兰必须在自由状态对中,以消除应力;7、为避免管道振动和最大限度减小金属管浮子流量计的轴向负载,管道应有牢固的支架支撑;8、截流阀和控制流量都必须在金属管浮子流量计的下游.9、支管段要求在上游侧5DN,下游侧3DN(DN是管道的通径);环形孔板流量计适用于各种流体(气体,蒸汽,液体)介质,它除了具有标准孔板的结构简单,牢固,安装使用方便等特点以外,还具有以下优点:1.更适合测量饱和蒸汽,过热蒸汽以及煤气,冷却水等脏污流体.2.更容易适应高温,高压流体的流量测量.3.比圆缺孔板,偏心孔板工作更可靠,测量更精确.4.以较低的成本制成耐腐蚀型,测量腐蚀性流体的流量.5.由于本产品外部形状简单,容易制成夹套保湿型在夹套内通蒸汽,可以防止被测流体(如重油,渣油等)在测量管段内凝结或粘附;通以冷却液,可防止易汽化的液体在流经测流板时形成汽液两相流.6.采用均压环结构,减少了测量误差来源引至差压变送器的是在测流板上,下游处取压管横截面的静压平均值,减弱了上游局部阻力形成的速度分布畸变对精度的影响,实际精度更接近基本精度.7.要求较低的前后直管段8.采用一体型结构形式,减少管线敷设.9.采用带远传膜盒的差压变送器,可以测量诸如煤粉,渣油等脏污液体的流量.工作原理:环形孔板流量计和普通的标准孔板一样,依据的基本原理是流体连续性方程和伯努利方程. 把环形孔板安装在圆管中,当液体流经节流装置时,其上,下游侧之间就会产生压力差.连接方式:法兰连接和焊接连接.vse流量计德国VSEAR800流量计参数资料电磁流量计在结构上由传感器和转换器组成,其中传感器部分是检测出感应电压信号,也即是流量信号,经过信号传输线送给转换器;转换器部分主要起到处理流量信号,转换成可供显示仪、记录仪、计算机等处理的标准电信号。其结构示意图如图4-1所示。  电磁流量计传感器通过两端法兰,将它与被测流体所在的管道连接,安装在测量管道上。它是电磁流量计流量测量部分,在设计过程中,它应满足如下作用:(1)能够将流量信号转换成电压信号;(2)通过对转换器合理的设计,使无可避免的干扰所带来的不利影响减少到最小程度,最大程度的提高流量信号的信噪比;(3)在选择材料方面,尽量能够满足工业现场的要求,包括工业环境和电气属性等等。  电磁流量计转换器不仅仅给电磁流量计提供励磁电流,而且能够接收传感器测量的感应电动势信号,将该信号滤波、放大并转换为标准的电流电压信号,以能够在显示仪表、控制仪表和计算机网络实现对流量的远距离调控、监测、计算。  电磁流量计原型样机由10种元件组成,表4-1罗列出原型样机的元件清单,给出元件的参数,在装配图中标注出每一个元件的编号与位置,如图4-2所示,并作出了测量管道的三视图。权函数求解系统基础设计主要对管道、电极、励磁线圈进行设计,因为这三个方面的选材与设计直接决定了电磁流量计测量系统的精确度,影响到权函数的实验求解结果,同时在对管道、电极和励磁线圈设计时,要和COMSOL Multiphysics仿真模型中三者的尺寸和位置相一致,以达到权函数实验求解验证仿真求解的目的。针对传统电磁流量计用信号电缆的易受电磁干扰和内部产生较大噪音的性能缺陷,首先根据电磁流量计用信号电缆的特点及其运行环境要求设计了多种结构方案,而后综合考虑电缆抗电磁干扰水平、内部噪音水平、工艺的实现难度和制造成本等因素对相关设计方案进行反复筛选,最终确定了新型低噪音电磁流量计用信号电缆的结构。  该新型电缆的结构如图1所示。导体为单股退火镀锡软铜线,以提高导体的导电性和防腐蚀性。在导体外绕包一层薄F4(聚四氟Z烯)半导电带,有利于降低导体和绝缘之间的摩擦起电噪音。绝缘采用材料较为纯净.介电常数较小具有一定弹性的聚丙烯绝缘级材料,并采用挤压式挤出,减小绝缘层与导体的向隙。采用对绞组作为信号传输线,由于在两根传输线上感应的电压接近相等,减小了电压差值,提高了信号传输稳定性;对绞组由两种不同颜色绝緣线芯组成,相邻线对对绞节距应不大于100mrmn。对绞分屏蔽纪(即对对绞组进行分屏蔽,每对对绞组外绕包两层聚酯带和--层厚0.04mm铝塑复合带绕包,内置-根7X0.26mm镀锡铜绞线作引流线)有利于对不同对绞组之间信号中音的抑制和隔离。对绞分屏敞组同心式绞合成缆,在对绞分廉蔽组间]填充非吸湿性材料,以保证缆芯圆整。在成缆缆芯外绕包两层聚酯带,再采用铝塑复合带绕包,内置镀锡铜线作引流线,以提高电缆电磁屏蔽能力。总屏敞层外挤包隔离层(隔离护套).隔离层采用绝缘级低密度聚乙烯材料。隔离层外采用铠装层,铠装材料为高导磁合金钢带.其为强磁材料,叮将外来的磁通大部分限制在铠装层的外表面上(仅布少部分能进.人被屏蔽的空间);铠装时对高导磁合金钢带采用纵包焊接,确保其形成.连续圆杜管;铠装层可提高电缆抗电您T扰水平以及对电缆进行加强,减少电缆振动引起的电动势。外护奈采用监色软PVC(聚氯乙烯)护层级电缆材料挤包,实现电缆防护。  该新型低噪音电磁流量计用信号电缆通过开发新的结构和选用新的材料具有了高抗电磁干扰能力和优异的低噪音性能,可实现信号的高分辨率、高精度和稳定传输:a.通过采用绝缘线芯对绞、对绞铝箔分屏蔽、引流线设置、铝箔总屏蔽、全封闭钢合金铠装屏蔽等综合设计,对内外部电场和磁场形成有效的屏蔽隔离,抑制了内部串音,降低了信号传输的波动性,大大提高了电缆的抗电磁干扰水平,提高了电缆传输信号的准确性和可靠性。在实际工程安装中,电缆也不必穿金属管敷设,可降低工程成本。b.采用镀锡导体以及导体外设置F4半导电带,有利于降低导体和绝缘之间的摩擦起电噪音,同时电缆整体设计结构紧凑,尤其是钢合金铠装层的设计,使得电缆内部相对滑动少,一定程度上也减少了电缆内部摩擦起电噪音的产生,这样可以将原始噪音降低2~3个数量级,极大地提高了传输信号的分辨率和精度,减小了电磁流量计的计量误差,大大提高了电磁流量计的计量准确性、精确性和可靠性,完全可满足微量精确计量场合的使用要求。出现孔板流量计反向安装这种情况的原因有二:1.操作人员未进行岗前培训,技术不熟练,不熟悉工艺流程走向;2.由于操作人员在更换孔板,清洗检查节流装置,进行工艺改造安装时,或在进行训练的过程中,粗心大意,现场监督,检验不到位等.出现此情况时,孔板下游锐角边经缘朝向上游,其结果将直接影响计量偏低,反映在现场是差压下降一个台阶,而由于现场原因未能及时发现并纠正.其引起流量偏低的影响率,据国外实验研究资料数据为-12%~-17%,一般情况下,雷诺数不变时,高β值与低β值之间的流量偏差值为±2%,管径雷诺数越低,其流量偏差越大。  此外,在更换孔板以后,其配套产量计算参数必须同步更换,否则会出现相当大的正负偏差,若由小孔径换大孔径,参数未更换,则流量计量将偏高;反之,流量计量将偏低,在日输气量大的用户计量中,造成的损失将是很大,甚至是难以弥补的。  从以上分析,我们不难看出,孔板流量计反向安装,参数的错误是可以通过操作人员认真仔细的操作,培训来杜绝的,在天然气商品贸易结算中,是绝对不允许有此现象发生的,所以制定一套科学的严格的现场计量监督制度是很有必要且很重要的。1.制定气体流量计定期清理表内液体的制度  为保障旋进旋涡流量计计量的准确性,降低故障概率,在实际的运行与使用过程中,要进行计定期进行流量计各个部件的清理,尤其是要清理气体流量计内的无关液体,相关部门需结合其具体的使用情况,确定最佳的清理周期,应用恰当的清理方法,保障清理的效果.2.及时更换气体流量计漩涡发生体  漩涡发生体如果在使用的过程中出现了损坏现象,同样会影响计量精度.因此,这就要求在日常的维护过程中,需要定期进行气体流量计漩涡发生体的定期更换.通常情况下,漩涡发生体的损坏主要是由于气中含有细小泥沙等杂物,这些杂物会在流量计的运行过程中对螺旋体产生一定的冲击,进而导致传感器出现故障,这种情况下,就需要保障气中不存在任何无关的杂物,及时清理流量计螺旋体,避免其他杂质、硬物造成的冲击与损坏.3.现场进行压力系数调节  对每台旋进旋涡流量计而言,在出厂的过程中,都存在固定压力与温度系数,如果在实际的计量过程中,额定压力高于介质压力时,流量计的计量结果会与实际存在较大的偏差,甚至无法正常显示.因此,在实际的计量工作中,需结合介质压力等参数,可以进行压力系数的调节与控制.4.加强计量器的管理  机械干扰是旋进旋涡流量计最常见的故障,在实际的使用过程中,为了避免这些故障的出现,相关人员需要加强对流量计的管理,在安装的过程中,要严格遵守相应的安装规范,保障流量计前后良好的固定性,在操作的过程中,避免出现各种不当的操作行为.德国VSEAR800流量计参数资料电磁流量计应用中主要存在以下几点不足:(1)电磁流量计井下精确定位问题。由于仪器本身没有深度定位装置,仅器下入深度的计量是靠绞车上的深.度计数器来完成。深度计数器计量结果的精度不但与计数器本身有关,而且还与工作环境有关。如果深度误差太大,测量结果就失去意义。因此,深度校正是现场测试的一个关键问题。(2)管径变化对测量结果的影响。通常应用的电磁流量计是中心流速式的,仅器的标定是在特制的管道中完成的,如果测量环境与标定环境不同,就会出现测量误差。以内流式仪器为例,若它在内径为φ62mm光油管中标定,在内径为φ59mm的涂料油管中测量时就会引入最大15.28%的误差。这是系统误差,因此在仪器测量过程中要搞清楚被测管道的内径,解释资料时要扣除因管径变化引起的测量误差。大量实际测量数据表明,由管径变化引起的误差都在10%以内。(3)电磁流量计的标定问题。仪器是用清水标定的,若注,入介质改为污水或其它非清水介质时会对测量结果产生什么样的影响,也是应用中要考虑的一个问题。在实际应用中,常常需要在现场对仪器进行标定,且要保证标定结果的准确性。(4)不能连续测量。电磁流量计如果能连续测量管柱内的流动剖面,就能直观地反映出整个井筒内的吸水情况,这样有利于测井资料的解释。由于结构设计上的缺陷,电磁流量计目前还不能完全实现连续测量。  气体涡轮流量计中涡轮结构有焊接式和整体式,焊接式涡轮将叶片和轮毂焊接,整体式涡轮利用先进的CAD/CAM技术和数控加工技术直接加工成型。叶片型式主要有平板式和螺旋式,平板式叶片主.要应用于大外径焊接式涡轮,而螺旋式叶片应用较为广泛;材料主要有铝合金和不锈钢,铝合金与不锈钢相比具有自重较轻,工艺性好等特点;涡轮平均直径受流量计流通管径即型号的限制,可作为定参数处理;叶片数量选取主要考虑重叠度对仪表性能的影响,---般取13~20;叶片角度直接影响气体介质.对其产生驱动转矩的大小,气体介质对涡轮的驱动转矩公式为   式中:Td为驱动力矩,N.m;fd为周向驱动力,N;u1为介质入口速度,m/s;ɷ为涡轮角速度,rad/s。   综上述所述,采用整体式叶轮结构,螺旋型叶片,叶片数量为20。对于螺旋型叶片,需要确定叶片的螺旋角,根据式(2),要得到最大推动力矩,叶片螺旋角应为45°,但力矩公式是根据叶栅绕流计算得到,难免会和实际工况有所偏差。参考常用叶片角度,选取35°.45°和55°螺旋升角涡轮作为实验对象,气体涡轮流量计涡轮结构参数如图2所示。如何解决电磁流量计无输出信号或输出值有偏差第一如果管道内测量介质不满管电磁流量计就无法正常工作.因为在介质不满管的情况下电磁流量计会产“生最为常见的应用程序故障,产生这种现象可能是由于营道中介质流速非常低造成不满管流量计测量误差增大或者介质未能满过电极从而流量计根本无法进行工作.需通过工艺调整必须保证管道内测量介质充满才能使用电磁流量计进行测量.第二测量介质中含有大量空气和气体也会造成电磁流量计无法正常工作。这些气泡的存在造成流量计无法准确辨别干扰了其准确的测量。第三电磁流量计不能用于持续时间较短的配料操作,这是由于电磁流量计无法正常反复启动和停止,它的启动到正确读数之间存在一个时间滞后问题。第四电磁流量计本身不能计量质量流量.电磁流量计是一种速度式流量计测量的是体积流量若要测量质量流量必须配合高精度的密度测量装置来进行换算。计量管路流量量程变化是实际使用中经常遇到的情况, 特别是直接对没有储气设备用户供气的计量更是如此。我国天然气、煤气的大部分消耗是供给城市作民用燃气的,一般日负荷的变化都比较大,流量的量程变化也就较大。常用孔板流量计的量程比一般为3:1,对于大量程比的场合,一般采用以下三种方法解决。(1)将大流量分段多路并联组合进行测量.在流量量程变化较大的场合,往往采用不同管径的计算管道并联组合,通过计量管路的组合切换来适应流量的变化;这是目前较为常用的方法。(2)更换孔板片改变值进行测量.在不改变标准孔板节流装置和差压计的情况下,通过更换不同开孔直径的孔板,改变孔径比的方法来实现流量测量。适用于较长时间的季节性流量较大幅度改变或供气量的突然变化致使差压计超出规定使用范围的情况。(3)用一台孔板流量计并联不同量程差压计进行测量.采用同一台孔板流量计的一次装置,并联两台或两台以上不同量程的差压计进行切换测量。对于超声波流量计,流量修正系数K定义为沿超声流量计信号传播声道上的线平均流速Lv与管道截面平均流速Vs的比值。由式(2-13)和式(2-14)可以得到层流状态下的流量修正系数 K 为由式(2-17)和式(2-18)可以得到湍流状态下的流量修正系数K为根据表1可以得到不同雷诺数下湍流流态的流量修正系数K,而在实际工程应用中,当管道内流体雷诺数Re<105时,湍流状态流量修正系数K为 当管道内流体雷诺数Re>105时,湍流状态流量修正系数K为  上述对于流量修正系数的分析是基于超声波流量计处于理想的安装条件下,即安装处管道内流体充分发展。实际流量修正系数不仅与雷诺数有关,还与管道的安装状况、流量计上下游管段长度等因素有关。通常情况下管道内实际流态分布与理想流态分布有偏差,对流量计的测量精度产生影响,因此在管道布置和流量计安装时,一般要求上游直管段大于10倍管道内径,下游直管段要大于5倍管道内径。

QQ咨询

在线咨询 真诚为您提供专业解答服务

咨询热线

13905314198
7*24小时服务热线

关注微信

二维码 扫一扫添加微信
返回顶部