关注微信 微信二维码
咨询热线: 0531-85960083
济南融恩机电设备有限公司
德国VSEAHM03流量计中国官网
编辑:admin 浏览量:59 发布日期: 2022-05-09 00:29
德国VSEAHM03流量计中国官网同时我们还经营:  气体涡轮流量计准确度等级为1.0级,在音速喷嘴法气体流量标准装置上检测时出现绝大多数不合格的问题,而之前并未:出现类似情况,该品牌流量计的合格率很高,通过对基表的检测与高频脉冲输出的检测,二者误差一致,且均为负误差,仪表显示与输出均正常。表1为误差最大的一台气体涡轮流量计高频脉冲输出误差和基表机械显示部分的误差值。   通过对标准装置的自检,并未发现异常,装置工作正常。为了保证检测的可靠性,将该批仪表在.2000L钟罩式气体流量标准装置上进行了复检。音速喷嘴法气体流量标准装置与2000L钟罩式气体流量标准装置的系统误差在0.3%以内。通过复检发现气体涡轮流量计的示值误差在不断变化,重复性较差,随着检测时间的延长,示值误差不断减小,向正方向发展,考虑到音速喷嘴实验室的环境温度为10.5℃,钟罩实验室温度为20.1℃,因此进行恒温.后再进行试验。恒温后再次对气体涡轮流量计进行检测,表2为该台气体涡轮流量计的高频输出误差。   通过表2可以发现在恒温后的检测结果误差发生了较大的变化,重复性也较好,考虑到两套装置的系统误差不超过0.3%,但实际检测结果最大误差偏移达到了2.30%,如此之大的偏移量并不是标准装置所引起的。将该台气体涡轮流量计马上拿到音速喷嘴气体流量标准装置上进行复测,所用喷嘴未改变,检测结果见表3。   从表3可以发现在没有对仪表经过任何改动的情况下,在同样的装置下,仪表的示值误差合格,且和之前在装置上检测的误差发生了较大的偏移。通过分析实验中各个影响因素,发现变化较大的只有温度,为了确认影响因素为温度,将该流量计在音速喷嘴实验室10.5℃的环境温度下恒温,恒温后再进行实验,检测结果见表4。   通过恒温后的气体涡轮流量计的示值误差与最开始检测的误差相接近,说明温度变化对仪表的误差产生了较大的影响。通过对送检用户的询问,由于用户是外地送检,出发较早,且送检车辆空间有限,所以在送检前一天晚上就将部分仪表的外包装拆掉,并将表装车,放置在室外,第二天早起送检,虽然在检测之前进行了短时间恒温,但表体温度仍然较低。1.机械干扰  在旋进漩涡流量计的运行过程中,机械干扰的存在会影响计量结果的准确性,在实际的计量过程中,如果旋进漩涡流量计的使用过程中受到了剧烈的机械振动或者冲击,其内部的电气元件会出现受到影响,出现严重的振动与变形情况。在一些油田工程中,应用旋进漩涡流量计时,这种仪表多是安装在室内的,这种使用环境使得其在具体的应用过程中,机械干扰的情况难以避免,甚至有时还存在着声波干扰、地面振动干扰等现象,这一系列的干扰都将会影响计量结果的准确性。2.紫外线的伤害  由于旋进漩涡流量计多处于室外露天环境下,这种运行与使用环境就导致在实际的应用过程中,极易受到外部环境因素的影响,仪表的屏幕显示难以正常进行,常常存在读数不清晰、显示不全的问题。3.感应探头易损坏  旋进漩涡流量计的使用过程中,感应探头是其中的主要元件,在实际的使用过程中,在一定的条件下,受到各种内外部因素的干扰,常常会出现感应探头损坏的情况,比如,在大井节流器失效、开镜过程中气流量中杂质含量较高的情况下,探头极易被损坏,引发计量异常。  热式气体质量流量计按结构可以分为热分布型和浸入型。热分布型热式流量计将传感元件放置于管道壁,传感元件经过加热温度高于流休温度,流体流经传感元件表面导致上下游温度发生变化,利用上下游温度差测量流体流量,一般用于微小流速气体流量的测量。   热分布型热式流最计的T.作原理如图1所示,传感元件由上游热电阻、加热器利下游热电阻组成,加热器位于管道中心,使得传感元件温度高于坏境温度,上游热电阻和下游热电阻对称分布于加热器的两侧。图1中曲线1所示为管道中没有流休流过时传感元件的温度分布线.相对于加热器的上下游热电阻温度是对称的。当有流体经过热式传感元件时,温度分布为曲线2,显然流体将上游部分的热量带给下游,导致上游温度比下游温度低,上下游热电阻的温度差△T反映了流体的流量,即△T=f(m)。当流体流速过大时,上下游热屯阴的温度差△7趋向于0,因此热分布型热式气体质量流量计用于测量低流速气休微小流量。气体质量流量qm可表示为 式中:Cp-一流体介质的定压比热容;A一热传导系数;K一一仪表系数。   浸入型热式流最计的工作原理如图2所示,一般将两个热电阻置于中大管道中心,可测量中高流速流体。热电阻通较小电流或不通电流,温度为T;另一热电阻经较大电流加热,其温度T高于气体温度。管道中有气流通过时,两者之间的温度差为△T=Tv-T0气体质量流量qm与加热电路功率P、温度差△T的关系式为   式中:E一系数与流体介质物性参数有关;D一与流体流动有关的常数。   如果保持加热电路功率P恒定,这种测量方法为恒功率法;如果保持温度差△T恒定,这种测量方法为恒温差法,两种方法有各自的优缺点,使用时据具体环境和需要而定。目前较普遍的是采用恒温差法,由于需要不同的应用领域,恒温差法已不适用于某些场.合的测量,因此恒功率法应用领域越来越广泛。恒温差法的基本原理是流体流过加热的热电阻表面使得热电阻表面的温度降低,热电阻的阻值变小。反馈电路自动进行处理,通过热电阻的加热电流变大从而使得热电阻温度升高,即可使得热电阻与流体温度差恒定。通过测量传感电路的输出电流或输出电压便可获得流量值。恒功率法的基本原理是加热功率为恒定值,管道内没有流体流过时温度差△7最大,当流体流过热电阻表面时热电阻与流体温度差变小,通过测量△T便可得到流体流量。  涡街流量计是基于流体力学中著名的“卡门涡街”研制的。在流动的流体中放置- -非流线型柱形体,称旋涡发生体,当流体沿旋涡发生体绕流时,会在涡街发生体下游产生两列不对称但有规律的交替旋涡列,这就是所谓的卡门涡街,如图1所示。   大量的实验和理论证明:稳定的涡街发生频率ƒ与来流速度v1及旋涡发生体的特征宽度d有如下确定关系叫:   式中St为斯特罗哈数,与雷诺数和d相关。   当雷诺数Re在一定范围内(3 X102~2 X105)时(4],St为一常数,对于三角柱形旋涡发生体约为0.16   雷诺数的定义为   式中S为管道的横截面积。   由高精度气体涡街流量计的测量原理可知,通过测量旋涡发生频率仅能得到旋涡发生体附近的流速vI,由式(3)可知在横截面积一定的情况下,流体的流量Q与流体的平均流速v成正比,因此要精确计量流体的流量必须找到`v与v1的对应关系。   根据流体力学理论,在充分发展的湍流状态下,流体的速度分布有如下关系式川:   式中:vp为到管壁距离为y的P点的速度;y为点到管壁处的距离;Vmax:为管道中的最大流速,通常取管道中心的速度;R为管道的半径;n为雷诺数的函数。 表1中给出了部分雷诺数与n的对应关系。   由于旋涡发生体的位置固定,因此当雷诺数一定时v1与`v有固定的比例关系换言之,当雷诺数Re变化时,二者的比值也发生变化,   图3给出了不同雷诺数下充分发展的湍流的流速分布,如图所示Re越大,流速分布越平滑,即旋涡发生体附近的流速越接近平均流速,故ƒ( Re)应为单调递减函数。图4给出了3台50mm口径,宽度14 mm三角形旋涡发生体的气体涡衔流量计,在20℃,一个标准大气压下,不同雷诺数下的K值曲线。如图所示实验数据与理论分析基本一致,因此涡衔流量计的测量原理即决定了仪表系数的非线性特性。若要提高涡街流量计的计量精度,必须针对不同的流速分布对K值进行修正。vse流量计德国VSEAHM03流量计中国官网  玻璃转子流量计是通过量测设在直流管道内的转动部件的位置来推算流量的仪表甲,主要用于中、小管径的流量测量,使用范围广泛。相比其他类型的流量计,转子流量计可适用于高温高压场所,并且具有一定的耐腐蚀能力。   转子流量计按照用途可分为测量型及吹扫型。转子流量计具有结构简单、直观、压力损失小、维修方便等特点。转子流量计适用于测量通过管道公称通径D≤150mm的小流量,也可以测量腐蚀性介质的流量。   测量型转子流量计主要用于尿素装置中管道公称通径D≤150mm,介质为工艺冷凝液、蒸汽冷凝液、脱盐水、冲洗水等介质的小流量测量,大部分的测量型转子流量计主要用于尿液等易结晶腐蚀.管线冲洗时的测量。 测量型转子使用时流量计必须安装在垂直走向的管段.上,以使流体介质自下而上地通过转子流量计。   吹扫型转子流量计一方面应用于尿素装置中用于设备氮封,另一方面应用于仪表测量管线的吹扫。例如一段蒸发冷凝器、二段蒸发冷凝器的压力测量,如果采用插入式膜片的结构,尿素蒸汽很容易在膜片.上产生结晶,影响测量结果,这时就需要采用吹扫转子流量计进行压力的测量。   吹扫型玻璃转子流量计在安装时应选择合适的位置安装,以确保流量计吹扫装置的调整、清洗、拆卸方便,并确保介质的流体方向与流量吹扫装置要求的方向相同。安装时,针型阀应全部关闭,在实际测量时为防止浮子的突然加速,上冲撞击限位器,损坏测量部件,应缓慢地打开针型阀,将压力调整到工作压力。1.涡轮流量计的始动流量值qvmin很大程度上取决于轴和叶轮前后轴承间的机械摩擦阻力矩7b,而它是由轴承与轴的微小间隙内流体与固体壁面的粘性摩擦引起的,且内部流体可认为始终处于层流状态。Tb越小,qvmin也越小,因此为了使涡轮流量传感器在小流量测量范围内能够体现良好测量性能,最重要的是要减少轴和轴承之间的机械摩擦。2.流体介质密度ρ与qvmin值成反比,ρ越大,则qvmin越小。液体密度受温度影响不大,相比之下温度的变化会较大程度改变气体密度,所以测量气体时要留意温度因素,以防引起传感器特性曲线的变化。3.同样条件下,叶片安装角β越大,则qvmin越小。  当被测流体流量大于qvmin后,流量继续增加会使叶轮旋转角速度加快,此时流体因素阻力矩与机械摩擦阻力矩相比占据主要地位,故可认为Tb=0。由于流体流动状态不尽相同,而涡轮流量计传感器实际的特性曲线受流体流动状态影响.德国VSEAHM03流量计中国官网1.涡街流量计的测量范围较大,一般10:1,但测量下限受许多因素限制:Re>10000是涡街流量计工作的最基本条件,除此以外,它还受旋涡能量的限制,介质流速较低,则旋涡的强度、旋转速度也低,难以引起传感元件产生响应信号,旋涡频率f也小,还会使信号处理发生困难。测量上限则受传感器的频率响应(如磁敏式一般不超过400Hz)和电路的频率限制,因此设计时一定要对流速范围进行计算、核算,根据流体的流速进行选择。使用现场环境条件复杂,选型时除注意环境温度、湿度、气氛等条件外,还要考虑电磁干扰。在强干扰如高压输电电站、大型整流所等场合,磁敏式、压电应力等仪表不能正常工作或不能准确测量。2.振动也是该类仪表的一大劲敌。因此在使用时注意避免机械振动,尤其是管道的横向振动(垂直于管道轴线又垂直旋涡发生体轴线的振动),这种影响在流量计结构设计上是无法抑制和消除的。由于涡街信号对流场影响同样敏感,故直管段长度不能保证稳定涡街所必要的流动条件时,是不宜选用的。即使是抗振性较强的电容式、超声波式,保证流体为充分发展的单向流,也是不可忽略的。3.介质温度对涡街流量计的使用性能也有很大的影响。如压力应力式涡街流量计不能长期使用在300℃状态下,因其绝缘阻抗会由常温下的10MΩ~100MΩ急降至1MΩ~10KΩ,输出信号也变小,导致测量特性恶化,对此宜选用磁敏式或电容式结构。在测量系统中,传感器与转换器宜采用分离安装方式,以免长期高温影响仪表可靠性和使用寿命。涡街流量计是一种比较新型的流量计,处于发展阶段,还不很成熟,如果选择不当,性能也不能很好发挥。只有经过合理选型、正确安装后,还需要在使用过程中认真定期维护,不断积累经验,提高对系统故障的预见性以及判断、处理问题的能力,从而达到令人满意的效果。1)测量电磁流量计励磁线圈的电阻值,以确定励磁线圈是否有匝间短路(线路编号“7”和“8”之间的电阻),电阻值应在30欧姆之间和170欧姆。如果电阻与工厂记录相同,则认为线圈良好,并且不间接评估电磁流量计传感器的磁场强度。2)测量励磁线圈对地的绝缘电阻(测量编号“1”和“7”或“8”),以确定传感器是否潮湿,电阻值应大于20兆欧。3)测量电极和液体之间的接触电阻(测量数字“1”和“2”和“1”和“3”),并间接评估电极和衬里层表面的一般状况。如果电极表面和背衬层附着到沉积层,则沉积层是导电的还是绝缘的。它们之间的电阻应在1千欧和1兆欧之间,线号“1”和“2”以及“1”和“3”的电阻值应大致对称。4)关闭管道上的阀门,当电磁流量计充满液体且液体不流动时,检查整个机器的零点。根据需要进行适当调整。5)检查信号线和激励线各芯线的绝缘电阻,检查屏蔽层是否完好。6)使用GS8校准仪测试电磁流量计转换器的输出电流。当给定零流量时,输出电流应为:4.00 mA;当给定100%流量时,输出电流应为:20.00 mA。输出电流值的误差应优于1.5%。7)测试励磁电流值(转换器端子“7”和“8”之间),正负励磁电流应在规定范围内,约为137(5%)mA。电磁流量计等节点设备和站内PC机间的通信采用异步串行通讯控制规程,并采用地址位唤醒握手协议.因此在协议中规定了传地址和传数据两种不同的帧格式,如图4.4所示.地址帧和数据帧都有11位,其中第l位和最后l位相同,分别为起始位和停止位,紧接起始位的是8位数据位,第9位为标志位,用来区分所发送/接受的帧信息是地址帧还是数据帧.第9位为1时,表示PC机发送/接受的是“地址帧":第9位为0时,表示主机发送/接受的是"数据帧".命令帧与校验和的发送格式与数据帧相同,因此可由数据帧演化得到.

QQ咨询

在线咨询 真诚为您提供专业解答服务

咨询热线

13905314198
7*24小时服务热线

关注微信

二维码 扫一扫添加微信
返回顶部