德国VSEAPG流量计厂家
编辑:admin
浏览量:59
发布日期: 2022-05-08 19:33
德国VSEAPG流量计厂家同时我们还经营:流量计中有一款叫做气体涡轮流量计,对于不常用到的用户来说肯定很陌生。如果您使用过此款流量计时一定会给它本身的优点所吸引。那么针对那些对于气体涡轮流量计认识不是很深的用户今天我们就来介绍一下关于气体涡轮流量计的组成还有它的工作原理更重要的还有它的仪表系数的计算方法介绍: 气体涡轮流量计是一种速度式流量计,是近些年来迅速发展起来的新型仪表,这种流量计具有精度高、压力损失小、量程比大等优点,可测量多种气体或液体的瞬时流量和流体总量,并可输出0-10mA?DC或4-20mA?DC信号,与调节仪表配套控制流量。气体涡轮流量计的组成 气体涡轮流量计主要由涡轮流量变送器和指示积算仪组成[1]。涡轮流量变送器把流量信号转换成电信号,由指示积算仪显示被测介质的体积流量和流体总量。气体涡轮流量计的工作原理 流体流经传感器壳体,由于叶轮的叶片与流向有一定的角度,流体的冲力使叶片具有转动力矩,克服摩擦力矩和流体阻力矩之后叶片旋转,在力矩平衡后转速稳定,在一定条件下,转速与流速成正比,由于叶片具有导磁性,它处于信号检测器(由永久磁钢和线圈组成)的磁场中,旋转的叶片切割磁力线,周期性地改变线圈地磁通量,从而使线圈两端感应出电脉冲信号,此信号经过放大器的放大整形,形成有一定幅度的连续的矩形波,可远传至显示仪表,显示出流体的体积流量或总量。气体涡轮流量计仪表系数的理论表达式 作用在涡轮上的力矩可分为以下几个:流体通过涡轮时对叶片产生的切向推动力矩M1;流体沿涡轮表面流动时产生的粘滞摩擦力矩M2;轴承的摩擦力矩M3;磁电转换器对涡轮产生的电磁反作用阻力矩M4。 由此可建立涡轮的运动微分方程:(1)式中:J为涡轮的转动惯量;ω为涡轮的旋转角速度;τ为时间。当流量恒定时,涡轮达到匀速转动,所以M1=M2+M3+M4。推动力矩可表示为:M1=a1qv2-a2ωqv (2)式中:a1、a2为与涡轮传感器结构和流体密度有关的系数;qv为流量,L/s。由于气体涡轮流量计在量程范围内属于紊流工作区,固以下计算只考虑紊流时的情况。反作用力矩中的M2,在紊流时可近似表示为:M2= a3qv2 (3)通常M3和M4相对于M2比较小,但为了提高计算精度,这里根据文献[3]推导出了它们的表达式:M3=a4ω2/3 (4)M4=a5ω3 (5)分别将式(2)、(3)、(4)、(5)带入式(1)并经整理可得:qv2 - a6ωqv = a7ω2/3 + a8ω3 (6)式中:a6、a7、a8为经整理后的综合系数。电磁流量计施工安装注意事项1)满管要求: 测量液体时为保证测量精确,电磁流量计的管道必须充满液体.流体应该向上流动,当流体向下流动时,下流段的管道高于流量计.2)避免产生气泡: 若为二相流(含气体和液体),则会影响测量精度.要使流体中不含气泡,阀门应该安装在流量计下游.3)电磁流量计不能测量混相流体、分层流体、有气泡的流体,否则测量无法精准.该项目为被测介质为上游企业污水,不存在这个问题.4)电磁流量计对直管段长度有明确要求(D为流量计内径).对于90°弯头、T行三通、异径管、全开阀门等流体阻力件,离电磁流量计的电极中轴线至少5D直管段;对于不同开度阀门(比如调节阀),则上游侧直管段长度需要10D;一般传感器下游的直管段只需要3D即可.5)电磁流量计测量不同介质的混合液体时,混合点与流量计的距离至少要大于30D.6)电磁流量计安装可以水平、垂直和倾斜安装在管道上,测量流体方向与流量计上标识方向一致.水平安装时,电磁流量计的电极必须水平,法兰面与工艺管道轴线相垂直,垂直度允许偏差1°.7)电磁流量计安装时应该避免负压的产生,因此电磁流量计传感器的测量管道必须充满液体,必须有一定的背压.电磁流量计不应该安装在泵的进口,而应该安装在泵的出口后面.8)电磁流量计如果必须倾斜安装时,必须安装在流体上升管道,在开口排放的管道安装时,必须安装在管道的较低处.如图:1-入口 2-溢流口 3-入口 4–清洗口 5-流量计 6-短管 7-出口 8-排污口 9-排污阀1)测量电磁流量计励磁线圈的电阻值,以确定励磁线圈是否有匝间短路(线路编号“7”和“8”之间的电阻),电阻值应在30欧姆之间和170欧姆。如果电阻与工厂记录相同,则认为线圈良好,并且不间接评估电磁流量计传感器的磁场强度。2)测量励磁线圈对地的绝缘电阻(测量编号“1”和“7”或“8”),以确定传感器是否潮湿,电阻值应大于20兆欧。3)测量电极和液体之间的接触电阻(测量数字“1”和“2”和“1”和“3”),并间接评估电极和衬里层表面的一般状况。如果电极表面和背衬层附着到沉积层,则沉积层是导电的还是绝缘的。它们之间的电阻应在1千欧和1兆欧之间,线号“1”和“2”以及“1”和“3”的电阻值应大致对称。4)关闭管道上的阀门,当电磁流量计充满液体且液体不流动时,检查整个机器的零点。根据需要进行适当调整。5)检查信号线和激励线各芯线的绝缘电阻,检查屏蔽层是否完好。6)使用GS8校准仪测试电磁流量计转换器的输出电流。当给定零流量时,输出电流应为:4.00 mA;当给定100%流量时,输出电流应为:20.00 mA。输出电流值的误差应优于1.5%。7)测试励磁电流值(转换器端子“7”和“8”之间),正负励磁电流应在规定范围内,约为137(5%)mA。1.正确地安装 正确安装涡街流量计传感器是确保测量精确可靠的首要前提,若在安装地点和方式选择.上失误轻者影响测量精度重者会影响传感器的使用寿命甚至损坏传感器。 ①保证适当的直管段 安装传感器时,一般要求上游直管段长度15-40DN下游段长度5DN,可根据上下游管道的情况适当调整以保证测量精度。传感器也应避免在架空的非常长的管道上安装传感器这样时间一长后,由于传感器的下垂容易使传感器与法兰间的密封泄漏,若不得已要安装时必须在传感器的上下游2D处分别设置管道支架等紧固装置。 ②避免较强的振动 传感器应避免安装在振动较强的管道上,若不得已要安装时,必须采用减振措施,在传感器的上下游2D处分别设置管道紧固装置并加防震垫。在空压机出口处振动较强不能安装传感器应安装在储气罐之后。 ③根据测量流体选择合适的安装方式 在对高压风测量时,可以选择将涡街流量计传感器安装于水平管道或垂直管道.上但如果高压风中水份含量较高,水平安装时传感器应安装在管线的较高处,垂直安装时气体流向应由下向.上。无论水平或垂直安装流体流向必须与传感器表体.上的流向箭头保持一致。④对外部环境的要求 传感器避免安装在温度变化很大的场所和设备的热辐射范围内若必须安装应有隔热通风措施。在潮湿、含有腐蚀性气体的环境中安装时必须做好防潮及隔离措施。外因为电噪声会干扰传感器的正确测量,因此安装位置要远离大功率变压器、电机等干扰设备。 2.正确设定参数 流量积算仪具有良好的全中文界面,以方便用户操作。正确进行参数设定是保证计量精度的前提。测量介质选择空气,因为对高压风的体积流量计量不需要压力温度补偿,因此测量信号设置为工作状态下的体积流量输入信号选择频率瞬时流量的单位默认为m³/h不需要用户设定。使用电磁流量计的前提是被测液体必须是导电的,不能低于阈值(即下限值)。电导率低于阈值会产生测量误差直至不能使用,通用型电磁流量计的阈值在10-4~(5×10-6)S/cm之间,视型号而异。一般电导率阈值为5×10-6S/cm=5μS /cm。 工业用水及其水溶液的电导率大于10-4S/cm,酸、碱、盐液的电导率在10-4~10-1S/cm之间,使用不存在问题, 低度蒸馏水为10-5S/cm 也不存在问题。石油制品和有机溶剂电导率过低就不能使用。表1列出若干液体的电导率。从资料上查到有些纯液或水溶液电导率较低,认为不能使用,然而电磁流量计实际工作中会遇到因含有杂质而能使用的实例,这类杂质对增加电导率有利。对于水溶液,资料中的电导率是用纯水配比在实验室测得的,实际使用的水溶液可能用工业用水配比,电导率将比查得的要高,也有利于流量测量。在电磁流量计安装过程中,确保: 流动方向与传感器上的流动箭头方向一致(如果存在)。 所有法兰螺栓都已紧固到最大扭矩值。 仪表安装不存在机械应力(扭转,弯曲),法兰型/夹持型的配对法兰保持轴对称与平行条件,且使用适当的垫圈。 垫圈未伸入流动区,否则可能导致漩涡, 从而影响仪表的精度。 管路不会在仪表上产生任何力或力矩。 显示面向用户。 电缆接头中的保护塞只能在接线时拆除。 远程安装的转换器一定要安装在基本无振动的位置。 转换器不可直接暴露在阳光中(配有一个遮阳装置) 。推荐的安装条件 电磁流量计管道必须始终充满介质。 电极轴最好水平安装,反之,则与水平方向夹角不超过45°(图1) 管路稍微倾斜,以便排气,参见图2。 存在磨损时应垂直安装,流向向上,最大3m/s(图3) 阀门和关闭装置应安装在下游。 对于自由流进流出管道,应提供合适的反转管,确保管路始终充满介质(图4) 对于自由流出管道,不要在最高点或者向下的管路上安装仪表(传感器管道可能会排空或者处出现气泡),(图5)

德国VSEAPG流量计厂家电磁流量计是灌浆过程的主要工艺流程,为在施工中进行有效的控制,需对施工过程中的水和水泥浆液进行计量和控制。 钻孔、洗孔:灌浆施工首先要在岩层中自上而下分段进.行钻孔,待单孔终孔,用大量清水洗孔,至回水变清,无流量测量点,故不展开讨论。 简易压水试验:洗孔结束,下孔口管,密封孔口,以设计要求的压力向孔内送水,测定其相应的流量值,并据此计算岩体的透水率。计算结果关系到岩体渗透特性的评价以及灌浆成果资料整理。这一-测量点是十分重要和敏感的,准确是首要指标,水有一-定的电导率,满足电磁流量计的测量要求,需要重点考虑的是电磁流量计的口径,因为压水试验和灌浆用的是相同的电磁流量计. 灌浆:压水试验后,灌浆泵将一定水灰比(比如3:1,2:1,1:1,0.81,0.5:1)的水泥浆液压送到孔中,--部分进入裂隙而扩散,余下的浆液经回浆管返出孔外,流回到浆液搅拌机中,在规定的压力下,当注入率不大于0.4L/min时,继续灌注30min;或不大于1L/min,继续灌注60min,灌浆可以结束。每台钻孔设备都需要两台电磁流量计分别记录进、返浆流量,灌浆量就等于进浆量减去返浆量,现场管线与电磁流量计安装布置见图3。 由于现场灌浆泵泵量多为6m³/h(100L/min),故电磁流量计的量程选为100L/min,由电磁流量计的测量原理可知[4],其流速的下限由.同噪声或偏移的信噪比S/N(信号与噪声)来决定,上限则由测量管内衬里的磨损和配管的经济速度等来决定印。由于水泥浆液中带有水泥固体颗粒,考虑到对电磁流量计衬里和电极的磨损,选用流速≤5m/s,另一方面水泥浆液又具有易粘附、沉淀、结垢的特性,故电磁流量计测量管内的流速应不低于0.5m/s,以起到对电极和内衬的自清扫作用。一般当测量管内实际流速<0.1m/s时,感应电动势已变得十分微弱(零点几μV~几μV),此时噪声.的影响逐步变为主导,甚至淹没信号电动势4],由流速与相对误差的关系图(图4)可知,为了保证仪表的检测精度,流速应大于0.5m/s.故推荐使用流速范围为0.5~5m/s. 灌浆施工时吸浆量大小一般在0~100L/min,进、返浆,上电磁流量计相应的流量范围为30~100L/min,从流量、流速与口径三者关系表(表1)可知:电磁流量计口径选择DN25比较合适。DN25的测量范围是14.72~147.18L/min,同时DN25和现场灌浆管道口径一致,配套安装时,不需要变径。同时电磁流量计的时间常数也应该设置小一些,一般在1~3s,以提高测量的灵敏度。 封孔:待灌浆结束后,按照施工技术要求压浆封孔,无流量测量点,故不展开讨论。1.制定气体流量计定期清理表内液体的制度 为保障旋进旋涡流量计计量的准确性,降低故障概率,在实际的运行与使用过程中,要进行计定期进行流量计各个部件的清理,尤其是要清理气体流量计内的无关液体,相关部门需结合其具体的使用情况,确定最佳的清理周期,应用恰当的清理方法,保障清理的效果.2.及时更换气体流量计漩涡发生体 漩涡发生体如果在使用的过程中出现了损坏现象,同样会影响计量精度.因此,这就要求在日常的维护过程中,需要定期进行气体流量计漩涡发生体的定期更换.通常情况下,漩涡发生体的损坏主要是由于气中含有细小泥沙等杂物,这些杂物会在流量计的运行过程中对螺旋体产生一定的冲击,进而导致传感器出现故障,这种情况下,就需要保障气中不存在任何无关的杂物,及时清理流量计螺旋体,避免其他杂质、硬物造成的冲击与损坏.3.现场进行压力系数调节 对每台旋进旋涡流量计而言,在出厂的过程中,都存在固定压力与温度系数,如果在实际的计量过程中,额定压力高于介质压力时,流量计的计量结果会与实际存在较大的偏差,甚至无法正常显示.因此,在实际的计量工作中,需结合介质压力等参数,可以进行压力系数的调节与控制.4.加强计量器的管理 机械干扰是旋进旋涡流量计最常见的故障,在实际的使用过程中,为了避免这些故障的出现,相关人员需要加强对流量计的管理,在安装的过程中,要严格遵守相应的安装规范,保障流量计前后良好的固定性,在操作的过程中,避免出现各种不当的操作行为.在电磁流量计设定状态下(如何进入设定状态请参照前述操作),用▲或▼键上下翻屏查找,直到屏幕出现仪表量程设置字样,按右键确认键确认进入仪表量程设置,输入20mA对应的最大流量值(输入量程值时可按▲键对光标处数字加1或用▼键对光标处数字减1,移位时要先按左键复合键再同时按▼键光标右移1位选数位或先按左键复合键再同时按▲键使光标左移1位选数位),最大流量值输入完后,按右键确认键确认返回。(若按右键确认键不放,持续3秒钟则直接返回到显示状态,若要继续设定其它参数,按▲键.)(分体式仪表中若口径与量程选择不当屏幕下行将出现“错误”字样提示用户) 在电磁流量计设定状态下(如何进入设定状态请参照前述操作)用▲或▼键上下翻屏查找,直到屏幕出现流量方向选择字样,按右键确认键确认进入流量方向选择设置,再用上键▲选择正向或反向按右键确认键确认返回。(若按右键确认键不放,持续3秒钟则直接返回到显示状态,若要继续设定其它参数按▲键。(注:改变正负号也可改变接线,将信号线正负调换,还可以将传感器调换安装方向.)德国VSEAPG流量计厂家对于"径向"型单声道超声波流量计,流量修正系数K定义为沿超声流量计信号传播声道上的线平均流速Lv与管道截面平均流速Sv的比值。由式(2-13)和式(2-14)可以得到层流状态下的流量修正系数K为由式(2-17)和式(2-18)可以得到湍流状态下的流量修正系数K为根据表1可以得到不同雷诺数下湍流流态的流量修正系数 K,而在实际工程应用中,当管道内流体雷诺数Re<105时,湍流状态流量修正系数K为当管道内流体雷诺数Re>105时,湍流状态流量修正系数K为 上述对于流量修正系数的分析是基于流量计处于理想的安装条件下,即安装处管道内流体充分发展。实际流量修正系数不仅与雷诺数有关,还与管道的安装状况、流量计上下游管段长度等因素有关。通常情况下管道内实际流态分布与理想流态分布有偏差,对超声波流量计的测量精度产生影响,因此在管道布置和流量计安装时,一般要求上游直管段大于10倍管道内径,下游直管段要大于5倍管道内径。为保证超声波流量计流量测量精度,选择测量点时要求选择流体流场均匀的部分,一般应遵循下列原则:1、被测管道内流体必须是满管。2、选择被测管道的材质应均匀质密,易于超声波传播,如垂直管段(流体由下向上)或水平管段(整个管路中最低处为好)。3、安装距离应选择上游大于10倍直管径,下游大于5倍直管径(注:不同仪器要求的距离会有所不同,具体距离以使用的仪器说明书为准)以内无任何阀门、弯头、变径等均匀的直管段,测量点应充分远离阀门、泵、高压电、变频器等干扰源。4、充分考虑管内结垢状况,尽量选择无结垢的管段进行测量。外夹式流量计传感器安装要点 时差式超声波传感器安装方式有三种,分别是V法、Z法和W法,如图3所示。 测量时采用何种安装方式,仪器说明书均有规定,但在边界范围一般比较模糊。如TFX1020P时差式超声波流量计:V型安装法适用测量管径25~400 ㎜,Z型安装法适用测量管径100~2540㎜,W型安装法适用测量管径65㎜以下小管。V型与Z型、V型与W型在适用测量管径均有部分重叠,如遇此情况 则按下列原则选择最佳安装方式:V型安装一般情况下是标准安装方式,使用方便,测量准确。当被测管道很粗或由于被测流体浊度高、管道内壁有衬里或结垢太 厚,造成V型安装信号弱,仪表不能正常工作时,选用Z型安装。原因是使用Z型安装时,超声波在管道中直接传输,没有折射,信号衰耗小。W型安装适于小管, 通过延长超声波传输距离的办法来提高小管测量精度,如图3(c),使用W型安装时,超声波束在管内折射三次,穿过流体四次。 流量传感器安装方式有两种,分别是对称安装和同侧安装。对称安装适用于中小管径(通常小于600㎜)管道和含悬浮颗粒或气泡较少的液体;同侧安装适用于各种管径的管道和含悬浮颗粒或气泡较多的液体。外夹式超声波流量计传感器安装要求1、剥净测量点处附近保温层和保护层,使用角磨砂轮机、锉、砂纸等工具将管道打磨至光亮平滑无蚀坑。要求:漆锈层磨净,凸出物修平,避免局部凹 陷,光泽均匀,手感光滑圆润。需要特别注意,打磨点要求与原管道有同样的弧度,切忌将安装点打磨成平面,用酒精或汽油等将此范围擦净,以利于传感器粘接。2、在水平管段上,两个传感器必须安装在管道轴面的水平方向上,并且在轴线水平位置±45°的范围内安装,以防止管内上部流体不满、有气泡或下部有沉淀等现象影响正常测量,如图5所示。3、传感器安装处和管壁反射处必须避开接口和焊缝,如图6所示。4、传感器工作面与管壁之间保持有足够的耦合剂,不能有空气和固体颗粒,以保证耦合良好。 玻璃转子流量计是通过量测设在直流管道内的转动部件的位置来推算流量的仪表甲,主要用于中、小管径的流量测量,使用范围广泛。相比其他类型的流量计,转子流量计可适用于高温高压场所,并且具有一定的耐腐蚀能力。 转子流量计按照用途可分为测量型及吹扫型。转子流量计具有结构简单、直观、压力损失小、维修方便等特点。转子流量计适用于测量通过管道公称通径D≤150mm的小流量,也可以测量腐蚀性介质的流量。 测量型转子流量计主要用于尿素装置中管道公称通径D≤150mm,介质为工艺冷凝液、蒸汽冷凝液、脱盐水、冲洗水等介质的小流量测量,大部分的测量型转子流量计主要用于尿液等易结晶腐蚀.管线冲洗时的测量。 测量型转子使用时流量计必须安装在垂直走向的管段.上,以使流体介质自下而上地通过转子流量计。 吹扫型转子流量计一方面应用于尿素装置中用于设备氮封,另一方面应用于仪表测量管线的吹扫。例如一段蒸发冷凝器、二段蒸发冷凝器的压力测量,如果采用插入式膜片的结构,尿素蒸汽很容易在膜片.上产生结晶,影响测量结果,这时就需要采用吹扫转子流量计进行压力的测量。 吹扫型玻璃转子流量计在安装时应选择合适的位置安装,以确保流量计吹扫装置的调整、清洗、拆卸方便,并确保介质的流体方向与流量吹扫装置要求的方向相同。安装时,针型阀应全部关闭,在实际测量时为防止浮子的突然加速,上冲撞击限位器,损坏测量部件,应缓慢地打开针型阀,将压力调整到工作压力。1.涡街流量计的测量范围较大,一般10:1,但测量下限受许多因素限制:Re>10000是涡街流量计工作的最基本条件,除此以外,它还受旋涡能量的限制,介质流速较低,则旋涡的强度、旋转速度也低,难以引起传感元件产生响应信号,旋涡频率f也小,还会使信号处理发生困难。测量上限则受传感器的频率响应(如磁敏式一般不超过400Hz)和电路的频率限制,因此设计时一定要对流速范围进行计算、核算,根据流体的流速进行选择。使用现场环境条件复杂,选型时除注意环境温度、湿度、气氛等条件外,还要考虑电磁干扰。在强干扰如高压输电电站、大型整流所等场合,磁敏式、压电应力等仪表不能正常工作或不能准确测量。2.振动也是该类仪表的一大劲敌。因此在使用时注意避免机械振动,尤其是管道的横向振动(垂直于管道轴线又垂直旋涡发生体轴线的振动),这种影响在流量计结构设计上是无法抑制和消除的。由于涡街信号对流场影响同样敏感,故直管段长度不能保证稳定涡街所必要的流动条件时,是不宜选用的。即使是抗振性较强的电容式、超声波式,保证流体为充分发展的单向流,也是不可忽略的。3.介质温度对涡街流量计的使用性能也有很大的影响。如压力应力式涡街流量计不能长期使用在300℃状态下,因其绝缘阻抗会由常温下的10MΩ~100MΩ急降至1MΩ~10KΩ,输出信号也变小,导致测量特性恶化,对此宜选用磁敏式或电容式结构。在测量系统中,传感器与转换器宜采用分离安装方式,以免长期高温影响仪表可靠性和使用寿命。涡街流量计是一种比较新型的流量计,处于发展阶段,还不很成熟,如果选择不当,性能也不能很好发挥。只有经过合理选型、正确安装后,还需要在使用过程中认真定期维护,不断积累经验,提高对系统故障的预见性以及判断、处理问题的能力,从而达到令人满意的效果。作为一种用于测量流量的仪表,涡街流量计与流量积算仪表放在一起用就能对液体流量和总量进行测量,并且还能用于很多其他的行业,给其他领域也带来了一定的好处。 现如今,涡街流量计已被广泛应用到工业生产中,作用也越来越重要,如果在涡街流量计使用过程中反映出测量数据不准确,首先要做的就是判断是那个方面的不正确导致了流量的误差,下面,苏川仪表和大家一起探讨关于涡街流量计测量误差的原因分析:1、温度对测量的影响:温度对一般的流量计测量介质都会有影响,温度高低影响了介质的密度,粘度等等,这些都会让测量结果不准确,出现误差。 消除此影响一般是对K系数进行修正,目前一些厂家的流量计已对温度的影响在软件中进行固定温度修正和实时温度修正。2、选型方面的问题:实际选型应选择尽可能小的口径,以提高测量精度,例如,一条涡街管线设计上供几个设备使用,由于工艺部分设备有时候不使用,造成目前实际使用流量减小。 涡街流量计实际使用造成原设计选型口径过大,相当于提高了可测的流量下限,工艺管道小流量时指示无法保证,流量大时还可以使用,因为如果要重新改造有时候难度太大,工艺条件的变动只是临时的,可结合参数的重新整定以提高指示准确度。3、参数整定方向的原因:产品参数错误导致仪表指示有误。参数错误使得二次仪表满度频率计算错误,满度频率相差不多的使得指示长期不准,实际满度频率大干计算的满度频率的使得指示大范围波动,无法读数。而资料上参数的不一致性又影响了参数的确定,通过重新标定结合相互比较确定了参数,解决了此类问题。 涡街流量计作为一种高精度的仪器,不仅仅是在制造和使用的过程中需要严格遵守其要求,在后期的保养中也必须特别注意才能不使流量计提前退休。